Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Ferroelectric PHOtonics ENablIng novel functionalities and enhanced performance of neXt generating PICs

Projektbeschreibung

Entwicklung einer neuen Generation photonischer Schaltungen

Photonische integrierte Schaltkreise sind Mikrochips, die anstelle von herkömmlichen Elektronen Licht zur Verarbeitung nutzen. Im Rahmen des EU-finanzierten Projekts PHOENIX soll die nächste Generation von photonischen integrierten Schaltkreisen entwickelt werden, indem neue Materialplattformen, wie Bariumtitanat auf Siliziumnitrid, zum Einsatz kommen. Die Plattformen werden mit Metall-Isolator-Übergangsmaterialien und epitaktischen ferroelektrischen Werkstoffen wie Vanadiumoxiden optimiert, wodurch eine effizientere Kontrolle der optischen Signale möglich wird. Die Forschenden werden ferner untersuchen, wie sich die Herstellung von Oxid-Dünnschichten mittels Molekularstrahl-Epitaxie verbessern lässt. Im Zuge des Projekts sollen die neuen Chips in vier Anwendungsfällen demonstriert werden: vollständig homomorphe Verschlüsselung, 5G-Infrastruktur, Inferenz tiefer neuronaler Netze sowie Training tiefer neuronaler Netze.

Ziel

In PHOENIX, we create the next generation of compact photonic integrated circuits (PIC) offering a continuous and efficient control over optical signals. A barium titanate (BTO) on silicon nitride (SiN) platform will be optimized to enable novel functionalities and produce enhanced PICs. The novel functionalities stem from a combination of materials having a metal-insulator transition with epitaxial ferroelectrics. Vanadium oxides (VOx) deliver a maximum contrast in absorption while Barium Titanate (BTO) offers an efficient and programmable control of the phase of an optical signal through Pockels and photorefractive effects.
The developed technologies will be demonstrated in four uses cases in high-impact emerging applications: 1) fully homomorphic encryption, 2) 5G infrastructure, 3) inference of deep neural networks and 4) training of deep neural networks.
The project has four main objectives: a) to provide novel photonic technologies with enhanced functionalities thanks to the integration of VOx and BTO, b) to provide a BTO/SiN waveguide platform for subsequent manufacturing of PICs and an upgraded version of such a platform integrating VOx with the potential to improve their performance and scalability, c) to build up the demonstrators, and d) to advance in the understanding, realization and upscaling of high-quality oxide thin-films by molecular beam epitaxy (MBE) on large area.
The validation of the developed technology will be completed with an extrapolation to benchmark against representative existing systems and a roadmap for photonic-electronic integration. The project will perform a market analysis and a techno-economic evaluation in order to define business models and exploitation plans that ensure the sustainability of the PHOENIX platform to reduce innovation-to market-time and R&I costs for disruptive high-tech SMEs and maximize the impact of the 4 user cases demonstrators

Koordinator

KATHOLIEKE UNIVERSITEIT LEUVEN
Netto-EU-Beitrag
€ 1 197 500,00
Adresse
OUDE MARKT 13
3000 Leuven
Belgien

Auf der Karte ansehen

Region
Vlaams Gewest Prov. Vlaams-Brabant Arr. Leuven
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 1 197 500,00

Beteiligte (3)

Partner (3)