Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Impact of cell shapes on cell behaviour and fate

Project description

A closer look at how cellular memory effects immunity and cancer

During tissue growth and overgrowth, changes in tissue environments lead to alterations in cell shape, resulting in deformations. Cells exhibit adaptability to these shape changes, both in migratory cells and during cancer metastases. However, little is known about the related mechanisms and implications. The ERC-funded SHAPINCELLFATE project postulates that cells retain a memory of their mechanical and geometrical history, which influences their developmental trajectory. It will study the molecular mechanisms and physical principles that underlie these memory effects induced by changes in cell shape. It will also study how these impact immunity and cancer. The focal points of this research are dendritic cells and cancer cells originating from mammary epithelia.

Objective

Cells are often depicted as irregular spherical objects - the shape they adopt in suspension. However, the packed environment of tissues alters this simple shape, causing large cell deformations. This occurs during normal tissue growth and is even more pronounced upon tissue overgrowth, as in the case of solid tumors. Cell shape changes frequently occur in migratory cells, such as immune cells that patrol the organism within interstitial tissues, and cancer metastases that escape from the primary tumor to invade healthy tissues. In all cases, cells adapt and survive even to very large deformations. The mechanisms underlying such response and the long-term consequences that repeated cell shape changes have on physiology and pathology remain largely unknown.

We have observed that changes in the shape of cells and organelle(s) induce reversible and irreversible modifications in their behaviour and function(s). We hypothesize that cells use such mechanisms to integrate the successive deformations of distinct amplitudes and durations that they experience during their lifetime. This implies the existence of shape-induced memory effects that not only encode the geometrical and mechanical history of the cell but also dictate its fate. Here, we propose to tackle the molecular mechanisms and physical principles accounting for shape-induced memory effects and to evaluate their impact on immunity and cancer. We will focus on two cell types that undergo large shape changes in vivo, and communicate to establish cancer immunity: (1) dendritic cells, which initiate adaptive immune responses, and (2) cancer cells derived from mammary epithelia. Our project will reveal whether boundary conditions imposed by physical confinement are overarching determinants of cellular behaviours at different spatial and temporal scales, and may further establish novel clinical paths for a holistic understanding of early malignancies and their recognition by the immune system.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC-SYG - HORIZON ERC Synergy Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-SYG

See all projects funded under this call

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 5 610 453,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 5 610 453,00

Beneficiaries (5)

My booklet 0 0