Project description
Shining a light on perovskite and silicon triple junction solar cells
Solar cell technology requires further innovation to improve energy generation and grid connectivity. Perovskite cell technology has demonstrated potential for increased efficiency and reliability during research and development. The EU-funded TRIUMPH project aims to advance perovskite cell research by developing an innovative 2-terminal triple junction device that combines perovskites and silicon to increase efficiency by up to 33 %. The project also aims to improve recycling rates and cost-efficiency in production methods and reduce reliance on critical raw materials.
Objective
The TRIUMPH project aims to initiate the development of a future PV cell technology node, based on an advanced triple junction cell concept, that is widely considered to be the next technology node to come after tandems. Presently, there is considerable amount of attention and research and development (R&D) activities devoted to Pk/Si tandems and already promising cell efficiencies, reliability and outdoor performance results have been obtained. The highest efficiency reported for a 2-terminal (2T) Pk/Si tandem is 29.8%, which has already gone past the Auger limit of Si. Therefore, in TRIUMPH, we plan to venture a step further than tandems by targeting TRIple junction devices, that can add the extra “OOMPH” (hence the name TRIUMPH) needed to reach efficiencies even >33%. These 2T triple junction devices will be based on perovskites for the middle and top cells and silicon for the bottom cell and will build on the knowledge garnered in the field of Pk/Si tandems. Additionally, cost-effective processing techniques that are industrially viable will be selected for scale-up developments, with minimal upscaling performance loss and degradation during reliability testing and outdoor monitoring. As we enter the tera-watt (TW) era of PV deployment, using earth-abundant materials and enforcing circularity become necessities. Towards this objective, we not only explore options that reduce critical raw materials (CRM) such as silver (Ag) and indium (In) in the triple junction devices, but also apply design for recycling principles to the triple junction modules. The consortium consists of 14 complementary partners from both research institutions and industry, each bringing their best forte to the table, which will help to establish the pathway and the value chain for future multi-junction modules. In this way, TRIUMPH would help the European Union (EU) to maintain its technological leadership in the PV domain for the future generation of PV technologies.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.5 - Climate, Energy and Mobility
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.5.2 - Energy Supply
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL5-2021-D3-02
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3001 Leuven
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.