Descrizione del progetto
Esaminare l’influenza dei modelli interni sulle idiosincrasie dell’esperienza visiva
Il cervello è generalmente considerato un sistema predittivo che mette in relazione gli stimoli sensoriali con modelli generati internamente di come dovrebbe apparire il mondo. Tuttavia, si sa poco delle caratteristiche di questi modelli interni e di come differiscano da persona a persona. Finanziato dal Consiglio europeo della ricerca, il progetto PEP si propone di esplorare sistematicamente il contenuto dei modelli interni attraverso l’analisi metodica delle raffigurazioni individuali che illustrano scene della vita reale. Le conclusioni ottenute costituiranno la base per un’ampia ricerca cognitiva, neurale e computazionale volta a stabilire il modo in cui i modelli interni si relazionano all’esperienza visiva e linguistica individuale, all’architettura funzionale del cervello e alla percezione di scene reali.
Obiettivo
In the cognitive and neural sciences, the brain is widely viewed as a predictive system. On this view, the brain conceives the world by comparing sensory inputs to internally generated models of what the world should look like. Despite this emphasis on internal models, their key properties are not well understood. We currently do not know what exactly is contained in our internal models and how these contents vary systematically across individuals. In the absence of suitable methods for assessing the contents of internal models, the predictive brain has essentially remained a black box.
Here, we develop a novel approach for opening this black box. Focusing on natural vision, we will use creative drawing methods to characterize internal models. Through the careful analysis of drawings of real-world scenes, we will distill out the contents of individual people’s internal models. These insights will form the basis for a comprehensive cognitive, neural, and computational investigation of natural vision on the individual level: First, we will establish how individual differences in the contents of internal models explain the efficiency of scene vision, on the behavioral and neural levels. Second, we will harness variations in people’s drawings to determine the critical features of internal models that guide scene vision. Third, we will enrich the currently best deep learning models of vision with information about internal models to obtain computational predictions for individual scene perception. Finally, we will systematically investigate how individual differences in internal models mimic idiosyncrasies in visual and linguistic experience, functional brain architecture, and scene exploration.
Our project will illuminate natural vision from a new angle – starting from a characterization of individual people’s internal models of the world. Through this change of perspective, we can make true progress in understanding what exactly is predicted in the predictive brain.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
HORIZON-ERC - HORIZON ERC Grants
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) ERC-2022-STG
Vedi tutti i progetti finanziati nell’ambito del bandoIstituzione ospitante
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
35390 GIESSEN
Germania
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.