Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Randomness and structure in combinatorics

Description du projet

Étude de l’impact du hasard sur des objets combinatoires structurés et aléatoires

La combinatoire concerne l’étude des structures discrètes, comme les réseaux, les permutations ou les systèmes d’ensembles. Il a été démontré que le hasard joue un rôle indissociable dans le domaine de la combinatoire. Les arguments probabilistes non constructifs offrent un moyen puissant de prouver l’existence de différents types d’objets combinatoires. Le projet RANDSTRUCT, financé par le CER, tentera de mieux comprendre le rôle du hasard dans la combinatoire, en mettant l’accent sur la relation entre les objets structurés (explicites) et les objets aléatoires ou de type aléatoire. RANDSTRUCT étudiera plusieurs problèmes combinatoires concrets, en particulier dans les domaines de la théorie de Ramsey et de la théorie de la conception.

Objectif

Randomness plays an inseparable role in combinatorics. Indeed, non-constructive probabilistic arguments are a powerful way to prove the existence of various kinds of combinatorial objects, and the study of random discrete structures has illuminated nearly all fields of combinatorics. I propose a program to achieve a deeper understanding of this role of randomness in combinatorics, emphasising the relationship between “structured” (hence explicit) objects, and random or “random-like” objects.

A) There are many situations in combinatorics where probabilistic arguments demonstrate that “almost all” objects satisfy a certain property, but it is difficult to explicitly specify an object with the property. The most notorious examples are in Ramsey theory, which studies how “disordered” it is possible for an object to be. I plan to investigate the structure of Ramsey graphs, with the goals of unifying the area and making decisive progress on important conjectures.

B) Conversely, certain areas of combinatorics have been slower to benefit from the probabilistic method; particularly areas in which algebraic constructions play a major role. Design theory is the study of combinatorial “arrangements” with very strong regularity properties, most naturally obtained by exploiting symmetry/regularity properties of algebraic structures. I plan to investigate probabilistic aspects of design theory, and in particular to build a theory of random designs.

C) Actually, structure and randomness often come together, due to the “structure vs pseudorandomness dichotomy” elucidated by Tao. Indeed, there are many important problems in combinatorics for which it is known how to solve both random instances and “structured” instances; in such cases we hope to decompose general instances into structured and pseudorandom parts, handled by different means. I describe several concrete problems in this vein, whose study will advance our general understanding of this phenomenon.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-ERC - HORIZON ERC Grants

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2022-STG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 343 890,00
Adresse
Am Campus 1
3400 KLOSTERNEUBURG
Autriche

Voir sur la carte

Région
Ostösterreich Niederösterreich Wiener Umland/Nordteil
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 343 890,00

Bénéficiaires (1)

Mon livret 0 0