Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Mechanism, Regulation and Functions of DNA Loop Extrusion by SMC complexes

Project description

Mechanistic insight into DNA packaging

Cells can fit approximately two metres of human DNA into a few micrometres. To package DNA into such a tiny space, it is complexed with proteins into chromatin which, in turn, folds into chromosomes. This condensation also helps regulate access to genetic information according to cell needs. Funded by the European Research Council, the LoopSMC project aims to investigate the mechanism by which DNA is folded. Researchers will focus on the process of loop extrusion and elucidate the role of specific proteins. The work will provide both structural and dynamic insight into the function and kinetics of loop extrusion in cellular processes. This is essential to understanding the fundamental packaging structure of the genome and its biological function.

Objective

Life and evolution of organisms relies on the maintenance, integration, propagation, and readout of genetic information. This information is stored in chromosomes that have a specific three-dimensional structure, a condensed yet accessible form of DNA that is dynamically folded during the lifespan of cells. How DNA is folded within chromosomes has however remained a mystery. It has been proposed that this is achieved by a process of loop extrusion in which SMC (Structural Maintenance of Chromosomes) complexes that are multi-subunit ATPases present in all kingdoms of life – including condensin and cohesin – reel DNA into loops, thereby organizing genomic DNA into higher-order structures. Recent in vitro single-molecule studies, stimulated by our initial discovery on condensin, provided direct evidences that both condensin and cohesin can indeed generate chromatin loops by extrusion. However, the most fundamental questions relating to this process remain unanswered: What is the molecular mechanism of loop extrusion? How is this process regulated? What are the functional roles of SMC-mediated loop extrusion beyond condensation? To address these questions, we will synergistically combine our single-molecule loop extrusion assay with correlative light and electron tomography and force spectroscopy to reveal both dynamic and structural aspects of loop extrusion and SMC proteins. Specifically, we will resolve how SMC complexes function as molecular ‘motors’, how regulatory factors modulate the kinetics of loop extrusion, and how loop extrusion impacts cellular functions like chromosome segregation and gene recombination, all at the single molecule level. In the long term, our findings will provide vital insights into the basic packaging structure of the genome which directly governs its biological function.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-STG

See all projects funded under this call

Host institution

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 500 000,00
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 500 000,00

Beneficiaries (1)

My booklet 0 0