Project description
Perovskite solar cells with power conversion efficiencies and extended lifetime
In the PV industry, metal-halide perovskites are a very promising material. They enable a lower environmental footprint and greater circularity. So far, only lead-based perovskites have demonstrated high efficiency and stability. The EU-funded VALHALLA project will develop lead-based perovskite solar cells and modules with improved power conversion efficiencies and an estimated, extended lifetime of at least 25 years. VALHALLA will also develop innovative encapsulation methods containing lead-chelating materials that retain all lead, even in broken modules. In this way, recyclability will be demonstrated, including full lead recovery at the end of life.
Objective
VALHALLA will develop perovskite solar cells and modules with power conversion efficiencies above 26% (23% for modules) and an extrapolated lifetime > 25 years, guided by eco-design principles that decrease the environmental impact of perovskite photovoltaics: scalable production processes, no harmful solvents, optimised use of materials, circularity and recyclability. Only lead-based perovskites have demonstrated efficiencies and stabilities that enable to reach the targeted performance levels. Therefore, in VALHALLA we focus primarily on lead based perovskites. We will develop innovative encapsulation methods containing lead-chelating materials that detain all lead even in broken modules. Circularity will be demonstrated, including a full end-of-life recovery of lead. We will focus on vacuum and hybrid processing that eliminates the use of toxic and harmful solvents during production. To increase the range of application of this sustainable technology, VALHALLA will develop rigid, flexible and semi-transparent perovskites with three bandgap ranges together with their optimized charge transport materials. Understanding the degradation mechanisms of both cells and modules in outdoor operating conditions and developing meaningful accelerated indoor stability tests for perovskite will be a key target of VALHALLA. The approach to stability will be from a global angle, from the theoretical understanding of the role of perovskite defects, composition, and architecture on the intrinsic stability to the development of module encapsulation and interconnection design that will enable long operational lifetime. An energy yield assessment will be performed based on outdoor stressed modules in three different European locations.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering energy and fuels renewable energy solar energy photovoltaic
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.5 - Climate, Energy and Mobility
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.5.2 - Energy Supply
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL5-2021-D3-03
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
46010 Valencia
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.