Project description
New decidable logic/automata models that permit complex-data reasoning
Formal language theory defines a language with strings of symbols in a finite ‘alphabet’. The restriction in finite alphabets has hindered its application in theoretical computer science to important areas such as the infinite set of integers and set of strings. Automata, abstract mathematical ‘machines’ that perform a function by automatically following a predefined sequence of operations, have been extensively investigated but run into ‘undecidability’ (inability to determine the answer) when given anything but the simplest data reasoning. The European Research Council-funded LASD project plans to overcome this barrier by identifying new decidable logic/automata models for data languages that permit complex-data reasoning as well as developing efficient algorithms to analyse them.
Objective
Formal language theory is indisputably one of the most successful theories in theoretical computer science with many applications in such fields as formal verification, programming languages, and databases, to name a few. Despite this, the standard restriction to finite alphabets has been a limiting factor in the applicability of the theory in various important application domains, wherein sequences with data (i.e. ranging over an infinite domain like the set of integers and the set of strings) naturally arise. This has motivated an extensive study of automata over infinite alphabets in the last three decades, which aims to develop algorithms for analyzing data languages. It was, however, quickly realized that permitting anything but the simplest data reasoning results in undecidability for the most fundamental models in the theory. Given the growing practical needs for tools for reasoning about sequences with data, it is crucial that we break through this undecidability barrier.
The aim of the project is to overcome the current undecidability barrier in extending automata theory over infinite alphabets with complex data reasoning. The first concrete objective is, thus, to identify new decidable logic/automata models for data languages that permit complex data reasoning over various data domains (e.g. integer linear arithmetic, real-closed fields, string constraints, etc.), and to develop efficient algorithms for analyzing them. In addition to making fundamental theoretical contributions in automata theory
over infinite alphabets, I also aim to address the current practical needs for tools for reasoning about sequences.
Thus, the second objective of the project is to transfer new algorithmic insights to the following important application
domains:
(1) querying graph databases, (2) verification of list-manipulating programs, and (3) interpretable machine learning for sequences.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
67663 KAISERSLAUTERN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.