Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

EXPeriment driven and user eXPerience oriented analytics for eXtremely Precise outcomes and decisions

CORDIS proporciona enlaces a los documentos públicos y las publicaciones de los proyectos de los programas marco HORIZONTE.

Los enlaces a los documentos y las publicaciones de los proyectos del Séptimo Programa Marco, así como los enlaces a algunos tipos de resultados específicos, como conjuntos de datos y «software», se obtienen dinámicamente de OpenAIRE .

Resultado final

Core framework services - Data and knowledge management (se abrirá en una nueva ventana)

This deliverable will document the core framework services responsible for (a) the secure and distributed management of datasets, knowledge assets and experimentation-based learning outcomes and (b) defining and enforcing appropriate data authorisation by considering contextual information of the requestor, the artefact to be accessed and processed and their environment. It will include prototype libraries and/or tools and will document their implementation and usage information.

Data selection, integration, and simulation services (se abrirá en una nueva ventana)

This deliverable will provide the first versions of (a) automated dataset selection strategies and feature augmentation methods, that will recommend the datasets that are fit-for-purpose for the current analytics task; (b) Analysis aware data integration and quality assurance services, that will support the interactive application of cleaning, interlinking, and enrichment methods to data gathered from various dispersed sources; (c) Data augmentation and simulation techniques, that will allow to detect the types and ranges of data that are missing in the datasets, in order to generate new data entries to balance the datasets with various augmentation techniques, and or deploy simulation models to produce new data. It will include prototype libraries and/or tools and will document their implementation and usage information.

Initial architecture, languages and models for complex experiment-driven analytics (se abrirá en una nueva ventana)

This deliverable will report on the design the architecture of the ExtremeXP framework, as well as the modelling language and the underlying models that will support experiment-driven analytics. It will provide the specifications of a domain specific modelling language, as well as knowledge graphs for semantically representing experiments. Finally, it will describe the architecture of the framework, which will comprise several independent, self-contained, and elastic core services that can be used to store knowledge assets from experiments, collect evaluation data including user feedback, plan experiments, and enact them (either locally or on remote systems) using virtualized resources and serverless functions.

Use case requirements (se abrirá en una nueva ventana)

This deliverable will report on the requirements elicited from each use-case and will issue technical designs of the use-case pilots while contributing functional and technical expectations over the ExtremeXP project. For each use-case, this process includes the selection of adequate datasets, the domain modelling, the variability point identification, the specification of the experiment models, the elicitation of user intents, and the determination of the technical settings for evaluation.

Publicaciones

Optimizing Data Analytics Workflows through User-driven Experimentation (se abrirá en una nueva ventana)

Autores: Keerthiga Rajenthiram
Publicado en: 3rd International Conference on AI Engineering – Software Engineering for AI (CAIN 2024), 2024
DOI: 10.1145/3644815.3644971

METIS: AN OPEN-ARCHITECTURE FOR BUILDING AI-READY CLOUD PLATFORMS – APPLICATION TO FOSTER RESEARCH ON HYDROLOGICAL MODELING (se abrirá en una nueva ventana)

Autores: Vincent GAUDISSART, Yasmine BOULFANI, Kevin LARNIER, Gwendoline STEPHAN, Jacques COVES and Christophe TRIQUET
Publicado en: Proceedings of the 2023 conference on Big Data from Space (BiDS’23), Edición KJ-05-23-390-EN-N, 2023, ISBN 978-92-68-08696-4
Editor: Joint Research Centre (European Commission)
DOI: 10.2760/46796

Capturing Analytical Intents from Text (se abrirá en una nueva ventana)

Autores: Gerard Pons, Miona Dimic, Besim Bilalli
Publicado en: 2020
Editor: Springer
DOI: 10.1007/s10844-020-00604-x

There is no Data Science without Data Governance: a Proposal Based on Knowledge Graphs

Autores: Besim Bilalli, Petar Jovanovic, Sergi Nadal, Anna Queralt, Oscar Romero
Publicado en: DOLAP 2024: 26th International Workshop on Design, Optimization, Languages and Analytical Processing of Big Data, 2024, ISSN 1613-0073
Editor: CEUR

Online ML Self-adaptation in Face of Traps (se abrirá en una nueva ventana)

Autores: Topfer, Michal; Plasil, Frantisek; Bures, Tomas; Hnetynka, Petr; Krulis, Martin; Weyns, Danny
Publicado en: Proceedings of ACSOS 2023, Toronto, Canada, 2023
DOI: 10.48550/arxiv.2309.05805

Non-Expert Level Analysis of Self-Adaptive System (se abrirá en una nueva ventana)

Autores: Claudia Raibulet and Xiaojun Ling
Publicado en: ASOCA2023@ICSOC 2023, 2023
Editor: Springer, Singapore
DOI: 10.1007/978-981-97-0989-2_8

Flash flood modeling and in urban areas using High Resolution hydrodynamic model and machine learning models

Autores: K. Larnier, J. Coves, G. Stephan and L. Dumas
Publicado en: Fifth Space for Hydrology Workshop, 2024
Editor: ESA

An Empirical Performance Comparison between Matrix Multiplication Join and Hash Join on GPUs (se abrirá en una nueva ventana)

Autores: Wenbo Sun; Asterios Katsifodimos; Rihan Hai
Publicado en: 2023 IEEE 39th International Conference on Data Engineering Workshops (ICDEW), 2023, ISBN 979-8-3503-2245-3
Editor: IEEE
DOI: 10.1109/ICDEW58674.2023.00034

Amalur: Data Integration Meets Machine Learning (se abrirá en una nueva ventana)

Autores: Hai, R. (author); Koutras, C. (author); Ionescu, A. (author); Li, Z. (author); Sun, W. (author); van Schijndel, Jessie (author); Kang, Yan (author); Katsifodimos, A (author)
Publicado en: Crossref, 2023
DOI: 10.48550/arxiv.2205.09681

Discovery of Semantic Non-Syntactic Joins

Autores: Marc Maynou, Sergi Nadal
Publicado en: DOLAP 2024: 26th International Workshop on Design, Optimization, Languages and Analytical Processing of Big Data, 2024, ISSN 1613-0073
Editor: CEUR

Evolvability of Machine Learning-based Systems : An Architectural Design Decision Framework (se abrirá en una nueva ventana)

Autores: Joran Leest, Ilias Gerostathopoulos, Claudia Raibulet
Publicado en: 2023 IEEE 20th International Conference on Software Architecture Companion (ICSA-C), 2023
Editor: IEEE
DOI: 10.1109/ICSA-C57050.2023.00033

Towards a Reference Component Model of Edge-Cloud Continuum (se abrirá en una nueva ventana)

Autores: Danylo Khalyeyev, Tomáš Bureš, and Petr Hnětynka
Publicado en: 20th IEEE International Conference on Software Architecture (ICSA 2023), 2023
Editor: IEEE
DOI: 10.1109/ICSA-C57050.2023.00030

Mitigating Data Sparsity in Integrated Data through Text Conceptualization (se abrirá en una nueva ventana)

Autores: Md Ataur Rahman, Sergi Nadal, Oscar Romero, Dimitris Sacharidis
Publicado en: 2024 IEEE 40th International Conference on Data Engineering (ICDE), 2024
Editor: IEEE
DOI: 10.1109/ICDE60146.2024.00269

Auditing for Spatial Fairness (se abrirá en una nueva ventana)

Autores: Sacharidis, Dimitris; Giannopoulos, Giorgos; Papastefanatos, George; Stefanidis, Kostas
Publicado en: 2023
DOI: 10.48550/arxiv.2302.12333

MAPE-K based Guidelines for Designing Reactive and Proactive Self-Adaptive Systems (se abrirá en una nueva ventana)

Autores: Hendrik Jilderda and Claudia Raibulet
Publicado en: Post Proceedings of the ECSA 2023 Workshops, in press, 2023
Editor: Springer, Cham
DOI: 10.1007/978-3-031-66326-0_4

Adaptive Strategies Metric Suite (se abrirá en una nueva ventana)

Autores: Koen Kraaijveld and Claudia Raibulet
Publicado en: 2024
Editor: Springer, Cham
DOI: 10.1007/978-3-031-64182-4_14

An Approach for Intelligent Behaviour-Based Threat Modelling with Explanations (se abrirá en una nueva ventana)

Autores: S. Preetam, M. Compastié, V. Daza, and S. Siddiqui,
Publicado en: 2023, ISSN 2832-2231
Editor: IEEE
DOI: 10.1109/NFV-SDN59219.2023.10329587

AutoFeat: Transitive Feature Discovery over Join Paths (se abrirá en una nueva ventana)

Autores: Andra Ionescu, Kiril Vasilev, Florena Buse, Rihan Hai, Asterios Katsifodimos
Publicado en: 2024 IEEE 40th International Conference on Data Engineering (ICDE), 2024
Editor: IEEE
DOI: 10.1109/ICDE60146.2024.00150

Model Selection with Model Zoo via Graph Learning (se abrirá en una nueva ventana)

Autores: Ziyu Li, Hilco van der Wilk, Danning Zhan, Megha Khosla, Alessandro Bozzon, Rihan Hai
Publicado en: 2024 IEEE 40th International Conference on Data Engineering (ICDE), 2024
Editor: IEEE
DOI: 10.1109/ICDE60146.2024.00088

Early Stopping of Non-productive Performance Testing Experiments Using Measurement Mutations (se abrirá en una nueva ventana)

Autores: Milad Abdullah, Lubomír Bulej, Tomáš Bureš, Vojtěch Horký, Petr Tůma
Publicado en: 2023 49th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), 2023, ISBN 979-8-3503-4235-2
Editor: IEEE
DOI: 10.1109/SEAA60479.2023.00022

HYPPO: Using Equivalences to Optimise Pipelines in Exploratory Machine Learning (se abrirá en una nueva ventana)

Autores: Antonis Kontaxakis, Dimitris Sacharidis, Alkis Simitsis, Alberto Abelló, Sergi Nadal:
Publicado en: 2024 IEEE 40th International Conference on Data Engineering (ICDE), 2024
Editor: IEEE
DOI: 10.1109/ICDE60146.2024.00024

Expert-Driven Monitoring of Operational ML Models (se abrirá en una nueva ventana)

Autores: Leest, Joran; Raibulet, Claudia; Gerostathopoulos, Ilias; Lago, Patricia
Publicado en: International Conference on Software Engineering (ICSE), 2024, ISBN 979-8-4007-0217-4
DOI: 10.48550/arxiv.2401.11993

Visualization-aware Time Series Min-Max Caching with Error Bound Guarantees (se abrirá en una nueva ventana)

Autores: Stavros Maroulis, Vassilis Stamatopoulos, George Papastefanatos, Manolis Terrovitis
Publicado en: 50th International Conference on Very Large Databases (VLDB 2024), 2024
Editor: VLDB Endowment
DOI: 10.14778/3659437.3659460

Controlling Automatic Experiment-Driven Systems Using Statistics and Machine Learning (se abrirá en una nueva ventana)

Autores: Milad Abdullah
Publicado en: Postproceedings of ECSA 2022 Tracks and Workshops, 2023
DOI: 10.1007/978-3-031-36889-9_9

Data Lakes: A Survey of Functions and Systems (se abrirá en una nueva ventana)

Autores: Rihan Hai; Christos Koutras; Christoph Quix; Matthias Jarke
Publicado en: IEEE Transactions on Knowledge and Data Engineering, 2023, ISSN 1041-4347
Editor: IEEE
DOI: 10.48550/arxiv.2106.09592

Information Systems (se abrirá en una nueva ventana)

Autores: Joseph Giovanelli, Besim Bilalli, Alberto Abelló, Fernando Silva-Coira, Guillermo de Bernardo
Publicado en: Information Systems, Edición 120, 2024, ISSN 0306-4379
Editor: Elsevier Science & Technology
DOI: 10.1016/j.is.2023.102314

Buscando datos de OpenAIRE...

Se ha producido un error en la búsqueda de datos de OpenAIRE

No hay resultados disponibles

Mi folleto 0 0