Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

EXPeriment driven and user eXPerience oriented analytics for eXtremely Precise outcomes and decisions

CORDIS fornisce collegamenti ai risultati finali pubblici e alle pubblicazioni dei progetti ORIZZONTE.

I link ai risultati e alle pubblicazioni dei progetti del 7° PQ, così come i link ad alcuni tipi di risultati specifici come dataset e software, sono recuperati dinamicamente da .OpenAIRE .

Risultati finali

Core framework services - Data and knowledge management (si apre in una nuova finestra)

This deliverable will document the core framework services responsible for (a) the secure and distributed management of datasets, knowledge assets and experimentation-based learning outcomes and (b) defining and enforcing appropriate data authorisation by considering contextual information of the requestor, the artefact to be accessed and processed and their environment. It will include prototype libraries and/or tools and will document their implementation and usage information.

Data selection, integration, and simulation services (si apre in una nuova finestra)

This deliverable will provide the first versions of (a) automated dataset selection strategies and feature augmentation methods, that will recommend the datasets that are fit-for-purpose for the current analytics task; (b) Analysis aware data integration and quality assurance services, that will support the interactive application of cleaning, interlinking, and enrichment methods to data gathered from various dispersed sources; (c) Data augmentation and simulation techniques, that will allow to detect the types and ranges of data that are missing in the datasets, in order to generate new data entries to balance the datasets with various augmentation techniques, and or deploy simulation models to produce new data. It will include prototype libraries and/or tools and will document their implementation and usage information.

Initial architecture, languages and models for complex experiment-driven analytics (si apre in una nuova finestra)

This deliverable will report on the design the architecture of the ExtremeXP framework, as well as the modelling language and the underlying models that will support experiment-driven analytics. It will provide the specifications of a domain specific modelling language, as well as knowledge graphs for semantically representing experiments. Finally, it will describe the architecture of the framework, which will comprise several independent, self-contained, and elastic core services that can be used to store knowledge assets from experiments, collect evaluation data including user feedback, plan experiments, and enact them (either locally or on remote systems) using virtualized resources and serverless functions.

Use case requirements (si apre in una nuova finestra)

This deliverable will report on the requirements elicited from each use-case and will issue technical designs of the use-case pilots while contributing functional and technical expectations over the ExtremeXP project. For each use-case, this process includes the selection of adequate datasets, the domain modelling, the variability point identification, the specification of the experiment models, the elicitation of user intents, and the determination of the technical settings for evaluation.

Pubblicazioni

Optimizing Data Analytics Workflows through User-driven Experimentation (si apre in una nuova finestra)

Autori: Keerthiga Rajenthiram
Pubblicato in: 3rd International Conference on AI Engineering – Software Engineering for AI (CAIN 2024), 2024
DOI: 10.1145/3644815.3644971

METIS: AN OPEN-ARCHITECTURE FOR BUILDING AI-READY CLOUD PLATFORMS – APPLICATION TO FOSTER RESEARCH ON HYDROLOGICAL MODELING (si apre in una nuova finestra)

Autori: Vincent GAUDISSART, Yasmine BOULFANI, Kevin LARNIER, Gwendoline STEPHAN, Jacques COVES and Christophe TRIQUET
Pubblicato in: Proceedings of the 2023 conference on Big Data from Space (BiDS’23), Numero KJ-05-23-390-EN-N, 2023, ISBN 978-92-68-08696-4
Editore: Joint Research Centre (European Commission)
DOI: 10.2760/46796

Capturing Analytical Intents from Text (si apre in una nuova finestra)

Autori: Gerard Pons, Miona Dimic, Besim Bilalli
Pubblicato in: 2020
Editore: Springer
DOI: 10.1007/s10844-020-00604-x

There is no Data Science without Data Governance: a Proposal Based on Knowledge Graphs

Autori: Besim Bilalli, Petar Jovanovic, Sergi Nadal, Anna Queralt, Oscar Romero
Pubblicato in: DOLAP 2024: 26th International Workshop on Design, Optimization, Languages and Analytical Processing of Big Data, 2024, ISSN 1613-0073
Editore: CEUR

Online ML Self-adaptation in Face of Traps (si apre in una nuova finestra)

Autori: Topfer, Michal; Plasil, Frantisek; Bures, Tomas; Hnetynka, Petr; Krulis, Martin; Weyns, Danny
Pubblicato in: Proceedings of ACSOS 2023, Toronto, Canada, 2023
DOI: 10.48550/arxiv.2309.05805

Non-Expert Level Analysis of Self-Adaptive System (si apre in una nuova finestra)

Autori: Claudia Raibulet and Xiaojun Ling
Pubblicato in: ASOCA2023@ICSOC 2023, 2023
Editore: Springer, Singapore
DOI: 10.1007/978-981-97-0989-2_8

An Empirical Performance Comparison between Matrix Multiplication Join and Hash Join on GPUs (si apre in una nuova finestra)

Autori: Wenbo Sun; Asterios Katsifodimos; Rihan Hai
Pubblicato in: 2023 IEEE 39th International Conference on Data Engineering Workshops (ICDEW), 2023, ISBN 979-8-3503-2245-3
Editore: IEEE
DOI: 10.1109/ICDEW58674.2023.00034

Amalur: Data Integration Meets Machine Learning (si apre in una nuova finestra)

Autori: Hai, R. (author); Koutras, C. (author); Ionescu, A. (author); Li, Z. (author); Sun, W. (author); van Schijndel, Jessie (author); Kang, Yan (author); Katsifodimos, A (author)
Pubblicato in: Crossref, 2023
DOI: 10.48550/arxiv.2205.09681

Discovery of Semantic Non-Syntactic Joins

Autori: Marc Maynou, Sergi Nadal
Pubblicato in: DOLAP 2024: 26th International Workshop on Design, Optimization, Languages and Analytical Processing of Big Data, 2024, ISSN 1613-0073
Editore: CEUR

Evolvability of Machine Learning-based Systems : An Architectural Design Decision Framework (si apre in una nuova finestra)

Autori: Joran Leest, Ilias Gerostathopoulos, Claudia Raibulet
Pubblicato in: 2023 IEEE 20th International Conference on Software Architecture Companion (ICSA-C), 2023
Editore: IEEE
DOI: 10.1109/ICSA-C57050.2023.00033

Mitigating Data Sparsity in Integrated Data through Text Conceptualization (si apre in una nuova finestra)

Autori: Md Ataur Rahman, Sergi Nadal, Oscar Romero, Dimitris Sacharidis
Pubblicato in: 2024 IEEE 40th International Conference on Data Engineering (ICDE), 2024
Editore: IEEE
DOI: 10.1109/ICDE60146.2024.00269

Auditing for Spatial Fairness (si apre in una nuova finestra)

Autori: Sacharidis, Dimitris; Giannopoulos, Giorgos; Papastefanatos, George; Stefanidis, Kostas
Pubblicato in: 2023
DOI: 10.48550/arxiv.2302.12333

MAPE-K based Guidelines for Designing Reactive and Proactive Self-Adaptive Systems (si apre in una nuova finestra)

Autori: Hendrik Jilderda and Claudia Raibulet
Pubblicato in: Post Proceedings of the ECSA 2023 Workshops, in press, 2023
Editore: Springer, Cham
DOI: 10.1007/978-3-031-66326-0_4

Adaptive Strategies Metric Suite (si apre in una nuova finestra)

Autori: Koen Kraaijveld and Claudia Raibulet
Pubblicato in: 2024
Editore: Springer, Cham
DOI: 10.1007/978-3-031-64182-4_14

An Approach for Intelligent Behaviour-Based Threat Modelling with Explanations (si apre in una nuova finestra)

Autori: S. Preetam, M. Compastié, V. Daza, and S. Siddiqui,
Pubblicato in: 2023, ISSN 2832-2231
Editore: IEEE
DOI: 10.1109/NFV-SDN59219.2023.10329587

AutoFeat: Transitive Feature Discovery over Join Paths (si apre in una nuova finestra)

Autori: Andra Ionescu, Kiril Vasilev, Florena Buse, Rihan Hai, Asterios Katsifodimos
Pubblicato in: 2024 IEEE 40th International Conference on Data Engineering (ICDE), 2024
Editore: IEEE
DOI: 10.1109/ICDE60146.2024.00150

Model Selection with Model Zoo via Graph Learning (si apre in una nuova finestra)

Autori: Ziyu Li, Hilco van der Wilk, Danning Zhan, Megha Khosla, Alessandro Bozzon, Rihan Hai
Pubblicato in: 2024 IEEE 40th International Conference on Data Engineering (ICDE), 2024
Editore: IEEE
DOI: 10.1109/ICDE60146.2024.00088

HYPPO: Using Equivalences to Optimise Pipelines in Exploratory Machine Learning (si apre in una nuova finestra)

Autori: Antonis Kontaxakis, Dimitris Sacharidis, Alkis Simitsis, Alberto Abelló, Sergi Nadal:
Pubblicato in: 2024 IEEE 40th International Conference on Data Engineering (ICDE), 2024
Editore: IEEE
DOI: 10.1109/ICDE60146.2024.00024

Expert-Driven Monitoring of Operational ML Models (si apre in una nuova finestra)

Autori: Leest, Joran; Raibulet, Claudia; Gerostathopoulos, Ilias; Lago, Patricia
Pubblicato in: International Conference on Software Engineering (ICSE), 2024, ISBN 979-8-4007-0217-4
DOI: 10.48550/arxiv.2401.11993

Visualization-aware Time Series Min-Max Caching with Error Bound Guarantees (si apre in una nuova finestra)

Autori: Stavros Maroulis, Vassilis Stamatopoulos, George Papastefanatos, Manolis Terrovitis
Pubblicato in: 50th International Conference on Very Large Databases (VLDB 2024), 2024
Editore: VLDB Endowment
DOI: 10.14778/3659437.3659460

Data Lakes: A Survey of Functions and Systems (si apre in una nuova finestra)

Autori: Rihan Hai; Christos Koutras; Christoph Quix; Matthias Jarke
Pubblicato in: IEEE Transactions on Knowledge and Data Engineering, 2023, ISSN 1041-4347
Editore: IEEE
DOI: 10.48550/arxiv.2106.09592

Information Systems (si apre in una nuova finestra)

Autori: Joseph Giovanelli, Besim Bilalli, Alberto Abelló, Fernando Silva-Coira, Guillermo de Bernardo
Pubblicato in: Information Systems, Numero 120, 2024, ISSN 0306-4379
Editore: Elsevier Science & Technology
DOI: 10.1016/j.is.2023.102314

È in corso la ricerca di dati su OpenAIRE...

Si è verificato un errore durante la ricerca dei dati su OpenAIRE

Nessun risultato disponibile

Il mio fascicolo 0 0