Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

EXPeriment driven and user eXPerience oriented analytics for eXtremely Precise outcomes and decisions

CORDIS bietet Links zu öffentlichen Ergebnissen und Veröffentlichungen von HORIZONT-Projekten.

Links zu Ergebnissen und Veröffentlichungen von RP7-Projekten sowie Links zu einigen Typen spezifischer Ergebnisse wie Datensätzen und Software werden dynamisch von OpenAIRE abgerufen.

Leistungen

Core framework services - Data and knowledge management (öffnet in neuem Fenster)

This deliverable will document the core framework services responsible for (a) the secure and distributed management of datasets, knowledge assets and experimentation-based learning outcomes and (b) defining and enforcing appropriate data authorisation by considering contextual information of the requestor, the artefact to be accessed and processed and their environment. It will include prototype libraries and/or tools and will document their implementation and usage information.

Data selection, integration, and simulation services (öffnet in neuem Fenster)

This deliverable will provide the first versions of (a) automated dataset selection strategies and feature augmentation methods, that will recommend the datasets that are fit-for-purpose for the current analytics task; (b) Analysis aware data integration and quality assurance services, that will support the interactive application of cleaning, interlinking, and enrichment methods to data gathered from various dispersed sources; (c) Data augmentation and simulation techniques, that will allow to detect the types and ranges of data that are missing in the datasets, in order to generate new data entries to balance the datasets with various augmentation techniques, and or deploy simulation models to produce new data. It will include prototype libraries and/or tools and will document their implementation and usage information.

Initial architecture, languages and models for complex experiment-driven analytics (öffnet in neuem Fenster)

This deliverable will report on the design the architecture of the ExtremeXP framework, as well as the modelling language and the underlying models that will support experiment-driven analytics. It will provide the specifications of a domain specific modelling language, as well as knowledge graphs for semantically representing experiments. Finally, it will describe the architecture of the framework, which will comprise several independent, self-contained, and elastic core services that can be used to store knowledge assets from experiments, collect evaluation data including user feedback, plan experiments, and enact them (either locally or on remote systems) using virtualized resources and serverless functions.

Use case requirements (öffnet in neuem Fenster)

This deliverable will report on the requirements elicited from each use-case and will issue technical designs of the use-case pilots while contributing functional and technical expectations over the ExtremeXP project. For each use-case, this process includes the selection of adequate datasets, the domain modelling, the variability point identification, the specification of the experiment models, the elicitation of user intents, and the determination of the technical settings for evaluation.

Veröffentlichungen

Optimizing Data Analytics Workflows through User-driven Experimentation (öffnet in neuem Fenster)

Autoren: Keerthiga Rajenthiram
Veröffentlicht in: 3rd International Conference on AI Engineering – Software Engineering for AI (CAIN 2024), 2024
DOI: 10.1145/3644815.3644971

METIS: AN OPEN-ARCHITECTURE FOR BUILDING AI-READY CLOUD PLATFORMS – APPLICATION TO FOSTER RESEARCH ON HYDROLOGICAL MODELING (öffnet in neuem Fenster)

Autoren: Vincent GAUDISSART, Yasmine BOULFANI, Kevin LARNIER, Gwendoline STEPHAN, Jacques COVES and Christophe TRIQUET
Veröffentlicht in: Proceedings of the 2023 conference on Big Data from Space (BiDS’23), Ausgabe KJ-05-23-390-EN-N, 2023, ISBN 978-92-68-08696-4
Herausgeber: Joint Research Centre (European Commission)
DOI: 10.2760/46796

Capturing Analytical Intents from Text (öffnet in neuem Fenster)

Autoren: Gerard Pons, Miona Dimic, Besim Bilalli
Veröffentlicht in: 2020
Herausgeber: Springer
DOI: 10.1007/s10844-020-00604-x

There is no Data Science without Data Governance: a Proposal Based on Knowledge Graphs

Autoren: Besim Bilalli, Petar Jovanovic, Sergi Nadal, Anna Queralt, Oscar Romero
Veröffentlicht in: DOLAP 2024: 26th International Workshop on Design, Optimization, Languages and Analytical Processing of Big Data, 2024, ISSN 1613-0073
Herausgeber: CEUR

Online ML Self-adaptation in Face of Traps (öffnet in neuem Fenster)

Autoren: Topfer, Michal; Plasil, Frantisek; Bures, Tomas; Hnetynka, Petr; Krulis, Martin; Weyns, Danny
Veröffentlicht in: Proceedings of ACSOS 2023, Toronto, Canada, 2023
DOI: 10.48550/arxiv.2309.05805

Non-Expert Level Analysis of Self-Adaptive System (öffnet in neuem Fenster)

Autoren: Claudia Raibulet and Xiaojun Ling
Veröffentlicht in: ASOCA2023@ICSOC 2023, 2023
Herausgeber: Springer, Singapore
DOI: 10.1007/978-981-97-0989-2_8

Flash flood modeling and in urban areas using High Resolution hydrodynamic model and machine learning models

Autoren: K. Larnier, J. Coves, G. Stephan and L. Dumas
Veröffentlicht in: Fifth Space for Hydrology Workshop, 2024
Herausgeber: ESA

An Empirical Performance Comparison between Matrix Multiplication Join and Hash Join on GPUs (öffnet in neuem Fenster)

Autoren: Wenbo Sun; Asterios Katsifodimos; Rihan Hai
Veröffentlicht in: 2023 IEEE 39th International Conference on Data Engineering Workshops (ICDEW), 2023, ISBN 979-8-3503-2245-3
Herausgeber: IEEE
DOI: 10.1109/ICDEW58674.2023.00034

Amalur: Data Integration Meets Machine Learning (öffnet in neuem Fenster)

Autoren: Hai, R. (author); Koutras, C. (author); Ionescu, A. (author); Li, Z. (author); Sun, W. (author); van Schijndel, Jessie (author); Kang, Yan (author); Katsifodimos, A (author)
Veröffentlicht in: Crossref, 2023
DOI: 10.48550/arxiv.2205.09681

Discovery of Semantic Non-Syntactic Joins

Autoren: Marc Maynou, Sergi Nadal
Veröffentlicht in: DOLAP 2024: 26th International Workshop on Design, Optimization, Languages and Analytical Processing of Big Data, 2024, ISSN 1613-0073
Herausgeber: CEUR

Evolvability of Machine Learning-based Systems : An Architectural Design Decision Framework (öffnet in neuem Fenster)

Autoren: Joran Leest, Ilias Gerostathopoulos, Claudia Raibulet
Veröffentlicht in: 2023 IEEE 20th International Conference on Software Architecture Companion (ICSA-C), 2023
Herausgeber: IEEE
DOI: 10.1109/ICSA-C57050.2023.00033

Towards a Reference Component Model of Edge-Cloud Continuum (öffnet in neuem Fenster)

Autoren: Danylo Khalyeyev, Tomáš Bureš, and Petr Hnětynka
Veröffentlicht in: 20th IEEE International Conference on Software Architecture (ICSA 2023), 2023
Herausgeber: IEEE
DOI: 10.1109/ICSA-C57050.2023.00030

Mitigating Data Sparsity in Integrated Data through Text Conceptualization (öffnet in neuem Fenster)

Autoren: Md Ataur Rahman, Sergi Nadal, Oscar Romero, Dimitris Sacharidis
Veröffentlicht in: 2024 IEEE 40th International Conference on Data Engineering (ICDE), 2024
Herausgeber: IEEE
DOI: 10.1109/ICDE60146.2024.00269

Auditing for Spatial Fairness (öffnet in neuem Fenster)

Autoren: Sacharidis, Dimitris; Giannopoulos, Giorgos; Papastefanatos, George; Stefanidis, Kostas
Veröffentlicht in: 2023
DOI: 10.48550/arxiv.2302.12333

MAPE-K based Guidelines for Designing Reactive and Proactive Self-Adaptive Systems (öffnet in neuem Fenster)

Autoren: Hendrik Jilderda and Claudia Raibulet
Veröffentlicht in: Post Proceedings of the ECSA 2023 Workshops, in press, 2023
Herausgeber: Springer, Cham
DOI: 10.1007/978-3-031-66326-0_4

Adaptive Strategies Metric Suite (öffnet in neuem Fenster)

Autoren: Koen Kraaijveld and Claudia Raibulet
Veröffentlicht in: 2024
Herausgeber: Springer, Cham
DOI: 10.1007/978-3-031-64182-4_14

An Approach for Intelligent Behaviour-Based Threat Modelling with Explanations (öffnet in neuem Fenster)

Autoren: S. Preetam, M. Compastié, V. Daza, and S. Siddiqui,
Veröffentlicht in: 2023, ISSN 2832-2231
Herausgeber: IEEE
DOI: 10.1109/NFV-SDN59219.2023.10329587

AutoFeat: Transitive Feature Discovery over Join Paths (öffnet in neuem Fenster)

Autoren: Andra Ionescu, Kiril Vasilev, Florena Buse, Rihan Hai, Asterios Katsifodimos
Veröffentlicht in: 2024 IEEE 40th International Conference on Data Engineering (ICDE), 2024
Herausgeber: IEEE
DOI: 10.1109/ICDE60146.2024.00150

Model Selection with Model Zoo via Graph Learning (öffnet in neuem Fenster)

Autoren: Ziyu Li, Hilco van der Wilk, Danning Zhan, Megha Khosla, Alessandro Bozzon, Rihan Hai
Veröffentlicht in: 2024 IEEE 40th International Conference on Data Engineering (ICDE), 2024
Herausgeber: IEEE
DOI: 10.1109/ICDE60146.2024.00088

Early Stopping of Non-productive Performance Testing Experiments Using Measurement Mutations (öffnet in neuem Fenster)

Autoren: Milad Abdullah, Lubomír Bulej, Tomáš Bureš, Vojtěch Horký, Petr Tůma
Veröffentlicht in: 2023 49th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), 2023, ISBN 979-8-3503-4235-2
Herausgeber: IEEE
DOI: 10.1109/SEAA60479.2023.00022

HYPPO: Using Equivalences to Optimise Pipelines in Exploratory Machine Learning (öffnet in neuem Fenster)

Autoren: Antonis Kontaxakis, Dimitris Sacharidis, Alkis Simitsis, Alberto Abelló, Sergi Nadal:
Veröffentlicht in: 2024 IEEE 40th International Conference on Data Engineering (ICDE), 2024
Herausgeber: IEEE
DOI: 10.1109/ICDE60146.2024.00024

Expert-Driven Monitoring of Operational ML Models (öffnet in neuem Fenster)

Autoren: Leest, Joran; Raibulet, Claudia; Gerostathopoulos, Ilias; Lago, Patricia
Veröffentlicht in: International Conference on Software Engineering (ICSE), 2024, ISBN 979-8-4007-0217-4
DOI: 10.48550/arxiv.2401.11993

Visualization-aware Time Series Min-Max Caching with Error Bound Guarantees (öffnet in neuem Fenster)

Autoren: Stavros Maroulis, Vassilis Stamatopoulos, George Papastefanatos, Manolis Terrovitis
Veröffentlicht in: 50th International Conference on Very Large Databases (VLDB 2024), 2024
Herausgeber: VLDB Endowment
DOI: 10.14778/3659437.3659460

Controlling Automatic Experiment-Driven Systems Using Statistics and Machine Learning (öffnet in neuem Fenster)

Autoren: Milad Abdullah
Veröffentlicht in: Postproceedings of ECSA 2022 Tracks and Workshops, 2023
DOI: 10.1007/978-3-031-36889-9_9

Data Lakes: A Survey of Functions and Systems (öffnet in neuem Fenster)

Autoren: Rihan Hai; Christos Koutras; Christoph Quix; Matthias Jarke
Veröffentlicht in: IEEE Transactions on Knowledge and Data Engineering, 2023, ISSN 1041-4347
Herausgeber: IEEE
DOI: 10.48550/arxiv.2106.09592

Information Systems (öffnet in neuem Fenster)

Autoren: Joseph Giovanelli, Besim Bilalli, Alberto Abelló, Fernando Silva-Coira, Guillermo de Bernardo
Veröffentlicht in: Information Systems, Ausgabe 120, 2024, ISSN 0306-4379
Herausgeber: Elsevier Science & Technology
DOI: 10.1016/j.is.2023.102314

Suche nach OpenAIRE-Daten ...

Bei der Suche nach OpenAIRE-Daten ist ein Fehler aufgetreten

Es liegen keine Ergebnisse vor

Mein Booklet 0 0