Project description
Innovation for disability prediction in an ageing population
The interaction of socio-environmental risk factors and subclinical conditions and the increase of primary non-communicable diseases (dementia, chronic obstructive pulmonary disease, cerebrovascular and chronic ischemic heart diseases) are among the crucial determinants for disability, particularly in an ageing population. However, the multidimensional nature of the causal pathways of these interactions remains unknown. The health impact assessment (HIA) process provides insight into health risk factors and introduces new health policies. Although artificial intelligence algorithms offer high performance possibilities, the investigation of a completely digital approach for HIA is limited. The EU-funded MISTRAL project will use a federated learning architecture to develop a technological toolkit for dynamic, intelligent prediction of health-related features, forecasting the trajectories of disability and quality of life reduction.
Objective
The environment is one of the most crucial determinants of health. The Global Burden of Disease report estimates an emerging impact in terms of disability and reducing the quality of life worldwide, particularly for the aging populations. One of the root causes of this decline is likely to derive from the interaction of socio-environmental risk factors and sub-clinical conditions and the consequent increase of the primary non-communicable disease (dementia, COPD, cerebrovascular and chronic ischemic heart diseases). The multi-dimensional nature causal pathways of these interactions are still mostly unknown. In this complex scenario, where the relationship between exposure and outcomes is so different and multifaceted, the Health Impact Assessment (HIA) process is the standard tool that provides an overview of the matter, from the screening of health risk factors to the introduction of new health policies and the monitoring of effects. A complete digital approach for HIA that could dynamically adapt to the variability of the determinants and their interaction is still poorly investigated. Artificial Intelligence algorithms offer innovative and high-performance possibilities for HIA implementations, improving elaboration and resizing of complex information and data. This proposal aims to develop a technological toolkit for dynamic, intelligent HIA toolkit to predict the health impact of health-related features, forecasting the trajectories of disability and quality of life reduction. This method will use environmental, socio-economic, geographical, and clinical characteristics, managed and elaborated with a federated learning architecture. The generated models will be adjusted for lifestyle and individual conditions data sourced from large population-based digital surveys. The models will be trained and validated on three different exposures to the steel plants' pollution: Taranto in southern Italy, Rybnik in Poland, and Flanders in Belgium.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences basic medicine neurology dementia
- natural sciences earth and related environmental sciences environmental sciences pollution
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.1 - Health
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.1.2 - Environmental and Social Health Determinants
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-HLTH-2022-ENVHLTH-04
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00161 Roma
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.