Description du projet
Étudier les propriétés mécaniques des cellules en temps réel
Les cellules présentent des propriétés mécaniques complexes qui sont importantes pour leurs fonctions et leurs interactions avec leur environnement. Ces propriétés comprennent la rigidité, l’élasticité, la viscosité, l’adhésion et la contractilité, et peuvent changer en réponse aux forces mécaniques, aux signaux biochimiques et à la physiopathologie. La microscopie Brillouin est une technique d’imagerie qui permet de mesurer certaines propriétés mécaniques d’échantillons biologiques et de fournir des informations importantes sur leur état physiologique et pathologique. Financé par le Conseil européen de l’innovation, le projet IVBM-4PAP entend améliorer les temps d’acquisition nécessaires en microscopie Brillouin, offrant un outil précieux pour étudier les processus biologiques en temps réel et identifier les états pathogènes des cellules.
Objectif
The role and importance of mechanical properties of cells and tissues in cellular function, development and disease has widely been
acknowledged, however standard techniques currently used to assess them exhibit intrinsic limitations (invasive, lack of 3D capability
and of sub-cellular resolution). Recently, Brillouin Microscopy (BM), a type of optical elastography, has emerged as a non-destructive,
label- and contact-free method that can probe the viscoelastic properties of biological samples with diffraction-limited resolution in
3D. This led to increased attention amongst the biological and medical research communities. However, due to the long acquisition
time (hours), this novel technique has been applied only to fixed samples. One important open challenge is to use this approach to
follow the mechano-biological processes in living cells and in real time. Aim of our project is overcome the spectral-imaging
acquisacknowledged, however standard techniques currently used to assess them exhibit intrinsic limitations (invasive, lack of 3D capability and of sub-cellular resolution). Recently, Brillouin Microscopy (BM), a type of optical elastography, has emerged as a non-destructive, label- and contact-free method that can probe the viscoelastic properties of biological samples with diffraction-limited resolution in 3D. This led to increased attention amongst the biological and medical research communities. However, due to the long acquisition time (hours), this novel technique has been applied only to fixed samples. One important open challenge is to use this approach to follow the mechano-biological processes in living cells and in real time. Aim of our project is overcome the spectral-imaging acquisition time limitation by applying the heterodyne detection scheme, allowing the collection of viscoelastic properties in living sample at a sub-second timescale. We will attempt solving specific physio-pathological open problems in biomedicine for the first time.
Champ scientifique
Mots‑clés
Programme(s)
- HORIZON.3.1 - The European Innovation Council (EIC) Main Programme
Régime de financement
HORIZON-EIC - HORIZON EIC GrantsCoordinateur
16163 Genova
Italie