Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Fast gated superconducting nanowire camera for multi-functional optical tomograph

Periodic Reporting for period 1 - fastMOT (Fast gated superconducting nanowire camera for multi-functional optical tomograph)

Periodo di rendicontazione: 2023-04-01 al 2024-03-31

Traditionally, organ monitoring and deep-body functional imaging are performed using ultrasound, X-ray (including CT), PET or MRI. However, these techniques allow only very limited measurements of functionality and are usually combined with exogenous and radioactive agents. To overcome this limitation, six partners, coordinated by the Dutch SME Single Quantum, have joined forces to develop an ultra-high performance light sensor in different imaging techniques to radically improve the performance of microscopy and imaging.
The novel sensor is based on superconducting nanowire single-photon detectors, which have been shown to be ultra-fast and highly efficient. However, the active area and number of pixels have so far been limited to micrometre diameters and tens of pixels. The fastMOT consortium now aims at developing new techniques to overcome this limit and scale to 10,000 pixels and millimetre diameter. In addition, new strategies for performing time domain near infrared spectroscopy (TD-NIRS) and time domain speckle contrast optical spectroscopy (TD-SCOS) will be developed to optimally use this new light sensor with Monte-Carlo simulations.
The benefits of this new technology include:
* Higher accuracy of non-invasive diagnosis: The proposed MOT has the potential to significantly improve the accuracy of non-invasive diagnosis and will make it possible to monitor body functions such as oxygenation, haemodynamics or perfusion.
* 100x improvement of signal-to-noise ratio: Implemented in the new Multifunctional Optical Tomograph, the light sensor will achieve a 100x improvement of signal-to-noise ratio compared to using existing light sensors.
* Major impact on numerous sectors: Not only will the new sensing technology improve microscopy and imaging performance, but it will also enable ground breaking applications that will lead to new insights and a major economic boost.
In the first year of the project we have evaluated different detector specifications and tested their influence on experiments using Montecarlo simulations. Regarding the novel detector with extended area, we have outlined the main specifications and showed a proof of principle of the main novel elements we need to scale up the number of pixels up to the goal of 10,000.
In addition, we set up a laboratory working station at Politecnico Milano that combines Single Quantum’s superconducting nanowire single-photon detectors (SNSPDs) with state-of-the-art laser systems to allow the exploration of the experimental parameters for functional diffuse optical imaging deep into the brain, in particular the combination of time-domain Near Infrared spectroscopy (TD-NIRS) and time-domain speckle correlation spectroscopy (TD-SCOS). We achieved some promising initial results on the experimental setup that will allow to define the next steps in the project.
The project is in an initial state and the results so far have limited impact: the main results of the project, both on the detector side and on the applications side are planned for a later stage of the project. However, we expect that the results at a later state in the project to be impactful in the field of diffuse optics.
fastMOT logo
Il mio fascicolo 0 0