Descripción del proyecto
Una innovadora tecnología de reactores solares abre la puerta a una producción química eficiente
El sol, una de las fuentes de energía más sostenibles que existen, podría utilizarse para alimentar reacciones fotoquímicas. Sin embargo, además de los esfuerzos por producir compuestos químicos de forma sostenible, la tecnología actual de reactores fotoquímicos está limitada en cuanto a la capacidad de controlar la luz de manera eficaz. El equipo del proyecto reaCtor, financiado con fondos europeos, tiene como objetivo hacer avanzar los reactores modernos de microflujo para adaptarlos a un uso generalizado. Los investigadores utilizarán fibras ópticas para la gestión inteligente de la luz y nanopartículas metálicas como transmisores eficaces de energía. Además, se utilizarán técnicas avanzadas para funcionalizar componentes microfluídicos. El reactor microfluídico basado en fibras que ha imaginado el equipo podría forjar una vía hacia el desarrollo sostenible y más eficiente de productos farmacéuticos, agroquímicos y materiales a escala de laboratorio e industrial.
Objetivo
Major challenges of the European and worldwide society such as the climate crisis, insufficient environmental protection, food and pharmaceutical shortages, and military aggressions require technologies that substitute fossil fuels with sustainable energy sources in basically all industries. Following the green deal of the EU commission, the European continent shall become the first climate-neutral continent by 2050. The chemical industry is a major contributor to CO2 emissions, as it accounts for about 30% of the industry’s total energy use worldwide. Even though so-called photochemistry promises to sustainably produce chemical compounds by (sun)light, corresponding reactors suffer from insufficient light management, even in modern micro flow reactors, which hinders their upscaling to applications in industry. This is exactly where the key to the technological and economic breakthrough lies, and this is where reaCtor comes into play. It will contribute to the ambitious goal of a sustainable chemistry by developing and validating a novel type of light-driven chemical reactor with enormous scale-up potential for industrial applications. It will be based on an interdisciplinary and innovative technological approach, combining optical fibres for smart light management, metallic nanoparticles as efficient energy transmitters, nano- and micro-fabrication for micro-fluidic functionalization as well as monolithic optical integration, and flow chemistry as an eco-friendly and safe chemical technology. For the first time, a demonstrator of the novel reactor architecture will be set-up and benchmarked with relevant photochemical reactions. Ultimately, the proposed fibre-based microfluidic reactors will enable implementation of new and efficient routes driven by light to prepare pharmaceuticals, agrochemicals, and materials on both lab and industrial scales.
Ámbito científico
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energy
- natural scienceschemical sciencesphysical chemistryphotochemistry
- engineering and technologynanotechnologynano-materials
- natural sciencesearth and related environmental sciencesatmospheric sciencesclimatologyclimatic changes
- natural sciencesphysical sciencesopticsfibre optics
Programa(s)
- HORIZON.3.1 - The European Innovation Council (EIC) Main Programme
Convocatoria de propuestas
HORIZON-EIC-2022-PATHFINDEROPEN-01
Consulte otros proyectos de esta convocatoriaRégimen de financiación
HORIZON-EIC - HORIZON EIC GrantsCoordinador
30167 Hannover
Alemania