Project description
Nanomaterials for powerful wind energy
Europe urgently needs to challenge the present energy crisis. Severe reduction of energy consumption and the use of new technologies are a necessity. Green wind energy is one of the most promising solutions. However, although winter in Europe should be the best time to harvest energy, 94 % of European wind farms cannot exploit it because icing events cause shutdowns leading to energy losses of up to 20 %. In this respect, the EIC-funded Nanowings project will substantially improve wind turbine performance, efficiency and durability by developing nanocoating based on a blended formulation of super-glue polymers combined with nanoparticles and with outstanding anti-icing and anti-fouling properties. The development is slated to enable the reduction of downtimes and support competitive electricity production and effectiveness.
Objective
Although winters are the best season for wind energy harvesting, icing is a major problem affecting the competiveness of this type of renewable energy. In Europe, about 94% of the windfarms have suffered icing events, which reduce turbine performance and causing even temporary shutdowns. Indeed, icing-induced power output losses in wind farms are found to reach over 20% of the annual production. There is not yet an efficient, cost-effective anti-icing or de-icing solution on the market: active solutions (thermal and mechanical systems) present low efficiency while passive technologies (typically coatings and paints) are not easily applied, and their durability and effectiveness are not well demonstrated.
Nanowings will overcome the icing challenge by developing a disruptive transparent nanocoating (super-glue polymers and nanoparticles blended formulation) with outstanding anti-icing and anti-fouling properties that can be applied in-situ via an innovative, portable, and light module (mini-electrospinning and heating system) which can be mounted under a remotely controlled drone. 5 g/m2 of the nanomaterial coated over the surface of a fiberglass-reinforced polyester or epoxy wind turbine blade creates a nano-rough layer (0.5 µm thick) that reduces the wettability of the surface and imprint self-cleaning properties. By avoiding ice accretion, Nanowings reduces downtimes and increases the electricity production of the wind turbine.
Nanowings is seizing a new concept of engineering and electrospinning of nanomaterials demonstrated at lab scale by partner LINARI. Moreover, the international consortium brings together top-notch academics (DTU) with seminal contributions in advanced nanomaterials and wind turbines performance under icing conditions; a well-recognized utility company (ENEL) as end-user and key testing partner (Valdihuelo Wind Farm - Spain), and an SME (EOLOGIX) with innovation in on-site wind turbines inspection based on avant-garde adhesive sensors.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences polymer sciences
- engineering and technology materials engineering coating and films
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics autonomous robots drones
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- engineering and technology nanotechnology nano-materials
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.3.1 - The European Innovation Council (EIC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-EIC - HORIZON EIC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-EIC-2022-TRANSITION-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
56121 Pisa
Italy
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.