European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Hydrogen Production in Pressurized 3D-Printed Solid Oxide Electrolysis Stacks

Descrizione del progetto

Pile di celle a combustibile elettrolitiche a ossidi solidi stampate in 3D in grado di conseguire buone prestazioni sotto pressione

Le celle elettrolitiche a ossidi solidi convertono il vapore (H2O) e/o la CO2 in H2 impiegando un elettrolita a ossido solido (ceramica). Dato che consentono di produrre H2 con un’impronta di carbonio esigua, il loro ruolo in sistemi energetici più puliti sarà fondamentale. Attualmente, la loro affidabilità e stabilità è compromessa nelle condizioni di alta pressione richieste per lo stoccaggio dell’energia e le applicazioni di trasporto. Il progetto HyP3D, finanziato dall’UE, risolverà questo problema grazie a innovative pile di celle elettrolitiche a ossidi solidi stampate in 3D che dispongono di proprietà meccaniche senza pari, di una funzionalità integrata e di capacità di bloccaggio automatico. Il progetto punterà alla conversione dell’elettricità in eccesso a partire da fonti rinnovabili in H2 compresso per l’immissione nella rete del gas e per la produzione in loco presso le stazioni di rifornimento di idrogeno.

Obiettivo

Reliable and stable operation under pressure is one of the major challenges of currently existing Solid Oxide Electrolysis (SOEL) technologies for its ultimate application in relevant sectors such as energy storage and transport. The main goal of HyP3D is to overcome this barrier by delivering disruptive ultra-compact and lightweight high-pressure SOEL stacks, able to convert electricity into compressed hydrogen, for gas grid injection (P2G) and on-site generation in Hydrogen Refueling Stations (HRS).

HyP3D stacks are based on innovative 3D-printed SOEL cells with unprecedented mechanical properties, embedded functionality and self-tightening capabilities implemented by design. These unique advantages will allow operation at pressures above five bars without the need of unpractical, energy inefficient and costly pressure vessels, which is the only actual solution for pressurization despite their low reliability. Breakthrough HyP3D geometries will multiply by more than three times the volume and mass specific power density of conventional technologies (reaching 3.40kW/L and 1.10 kW/kg, respectively), resulting in pressurized SOEC stacks with a remarkably reduced footprint (one third of state-of-the-art stacks) and ultra-low use of raw materials (76% reduction). Moreover, the elimination of any vessel will increase the system efficiency, reduce the final cost and substantially simplify the scaling-up towards required MW-size systems.

The project is product-driven and involves industrial partners with proved experience in mass manufacturing of ceramics by 3D printing, glass-to-metal sealing and assembly of electrolysers, which will ensure, together with the presence of P2G and HRS stakeholders, competently covering the entire value-chain. HyP3D technology will be fabricated in a pilot line, which will ensure reaching stack level and validation at laboratory scale by 2025 (TRL=4).

Meccanismo di finanziamento

RIA - Research and Innovation action

Coordinatore

FUNDACIO INSTITUT DE RECERCA DE L'ENERGIA DE CATALUNYA
Contribution nette de l'UE
€ 643 750,00
Indirizzo
C/ JARDINS DE LES DONES DE NEGRE 1
08930 Sant Adria De Besos
Spagna

Mostra sulla mappa

Regione
Este Cataluña Barcelona
Tipo di attività
Research Organisations
Collegamenti
Costo totale
€ 643 750,00

Partecipanti (7)