Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

NEXT GENERATION BATTERY MANAGEMENT SYSTEM BASED ON DATA RICH DIGITAL TWIN

CORDIS bietet Links zu öffentlichen Ergebnissen und Veröffentlichungen von HORIZONT-Projekten.

Links zu Ergebnissen und Veröffentlichungen von RP7-Projekten sowie Links zu einigen Typen spezifischer Ergebnisse wie Datensätzen und Software werden dynamisch von OpenAIRE abgerufen.

Leistungen

AI model for heat monitoring (öffnet in neuem Fenster)

A description of the proposed model architecture will be provided. Qualitative and quantitative comparison with SoA will also be reported.

New methods of resilient of data transmission (öffnet in neuem Fenster)

A new approach to develop blockchain services in the form of Network Function Virtualizations that can improve both maintainability and deployability of IoT networks. In addition, it enables sophisticated analysis of IoT transactions, improves security, and increases privacy, thanks to the global network awareness.

Mining model from explanation of AI models (öffnet in neuem Fenster)

The algorithm used to mine explanation from the model. A expert evaluation of the explanation is given as well.

Ontology of the battery domain integrating the BMS definition and the concept of failures and maintenance (öffnet in neuem Fenster)

A descrption of the built ontlogy and the different retained battery failure. The different used semantic rule of the ontology are described.

AI model for SoX prediction (öffnet in neuem Fenster)

A description of the architecture of the used model for predicting the SoX. A comparative results with the State of the Art wil be given.

Plan and Strategy for Dissemination and Communication (öffnet in neuem Fenster)

This deliverable will establish the basis for the development of common dissemination & exploitation plan in the project. This deliverable is linked with the task T7.1. Updates at M18 and M39.

Technical report on battery sizing methodologies for optimising first and second lives (öffnet in neuem Fenster)

"The ""battery first life"" configuration for current electric vehicle applications is our first point of interest. Second, the report outlines the methodology used to size ""battery second life."" Depending on the application type and energy management strategy, the to-be-developed sizing tools are meant to direct the designer in his decisions."

Benchmark service providers (öffnet in neuem Fenster)

Various research will be done to compare data’s security and storage, sustainability, infrastructures, environment and architecture of the different cloud providers in order to identify the solution best suited to our requirements and needs.

Benchmark of multiphysics models of battery systems including cooling (öffnet in neuem Fenster)

Report detailing existing multiphysics models of battery systems including cooling. Including aspect of cell modelling and how this is extended to sytem modelling including cooling system.

Training programme (öffnet in neuem Fenster)

Report on monthly seminars that will be organized. A summer school will be organized in Tallinn (June 2025)

Use cases for automotive and stationary (öffnet in neuem Fenster)

This deliverable will define and present the both use cases : auto & stationnary, which will be used for first life and second life applications of batteries.

Selected DT software for heat monitoring and battery ageing (öffnet in neuem Fenster)

A report reviewing existing DT software will be delivered. It will also explain the choice of the selected DT software.

Demonstration of a Hardware Abstraction Layer featuring expanded set of inputs (öffnet in neuem Fenster)

Hardware Abstraction framework on an embedded device capable of sensoring battery sensor signals and delivering an abstraction for upper layers resp. network transfer.

Simulated thermal images to train AI (öffnet in neuem Fenster)

A simulator for generating synthetic thermal images will be developed. This will enable producing a dataset formed by simulated thermal images that will be in turn used for training AI models.

Veröffentlichungen

OntoSoC: An ontology-based approach to battery pack SoC estimation (öffnet in neuem Fenster)

Autoren: Ala Eddine Hamouni, Franco Giustozzi, Ahmed Samet, Ali Ayadi, Slimane Arbaoui, Tedjani Mesbahi
Veröffentlicht in: Procedia Computer Science, Ausgabe 225, 2024, ISSN 1877-0509
Herausgeber: Elsevier BV
DOI: 10.1016/j.procs.2023.10.216

Toward Anomaly Representation in Lithium-Ion Batteries: An Ontology-Based Approach (öffnet in neuem Fenster)

Autoren: Marwa Zitouni, Franco Giustozzi, Ahmed Samet, Tedjani Mesbahi
Veröffentlicht in: Procedia Computer Science, Ausgabe 246, 2025, ISSN 1877-0509
Herausgeber: Elsevier BV
DOI: 10.1016/j.procs.2024.09.563

AI-enabled thermal monitoring of commercial (PHEV) Li-ion pouch cells with Feature-Adapted Unsupervised Anomaly Detection (öffnet in neuem Fenster)

Autoren: Abdelrahman Shabayek, Arunkumar Rathinam, Matthieu Ruthven, Djamila Aouada, Tazdin Amietszajew
Veröffentlicht in: Journal of Power Sources, Ausgabe 629, 2025, ISSN 0378-7753
Herausgeber: Elsevier BV
DOI: 10.1016/j.jpowsour.2024.235982

Data-driven strategy for state of health prediction and anomaly detection in lithium-ion batteries (öffnet in neuem Fenster)

Autoren: Slimane Arbaoui, Ahmed Samet, Ali Ayadi, Tedjani Mesbahi, Romuald Boné
Veröffentlicht in: Energy and AI, Ausgabe 17, 2024, ISSN 2666-5468
Herausgeber: Elsevier BV
DOI: 10.1016/j.egyai.2024.100413

Lecture Notes in Computer Science (öffnet in neuem Fenster)

Autoren: Amel Hidouri, Slimane Arbaoui, Ahmed Samet, Ali Ayadi, Tedjani Mesbahi, Romuald Boné, François de Bertrand de Beuvron
Veröffentlicht in: Lecture Notes in Computer Science, Computational Science – ICCS 2024, 2024, ISSN 0302-9743
Herausgeber: Springer Verlag
DOI: 10.1007/978-3-031-63783-4_14

Dual-model approach for one-shot lithium-ion battery state of health sequence prediction (öffnet in neuem Fenster)

Autoren: Slimane Arbaoui, Ahmed Samet, Ali Ayadi, Tedjani Mesbahi, Romuald Boné
Veröffentlicht in: Array, Ausgabe 24, 2024, ISSN 2590-0056
Herausgeber: Elsevier BV
DOI: 10.1016/j.array.2024.100367

Parameter Estimation for a Generic Na-ion Battery Model Using The Curve Fitting Approach (öffnet in neuem Fenster)

Autoren: Lakhdar Mamouri, Thomas Pavot, Tedjani Mesbahi
Veröffentlicht in: 2024 IEEE Vehicle Power and Propulsion Conference (VPPC), 2025
Herausgeber: IEEE
DOI: 10.1109/VPPC63154.2024.10755187

Hysteresis in Sodium-ion Batteries: Temperature and Relaxation Time Effects (öffnet in neuem Fenster)

Autoren: Sary Yehia, Lakhdar Mamouri, Nagham El Ghossein, Tedjani Mesbahi
Veröffentlicht in: 2024 IEEE Vehicle Power and Propulsion Conference (VPPC), 2025
Herausgeber: IEEE
DOI: 10.1109/VPPC63154.2024.10755409

Design of an Alternative Hardware Abstraction Layer for Embedded Systems with Time-Controlled Hardware Access (öffnet in neuem Fenster)

Autoren: Gabriel Simmann, Vinay Veeranna, Reiner Kriesten
Veröffentlicht in: SAE Technical Paper Series, Ausgabe 1, 2024
Herausgeber: SAE International
DOI: 10.4271/2024-01-2989

Accurate Recommendation of EV Charging Stations Driven by Availability Status Prediction (öffnet in neuem Fenster)

Autoren: Meriem Manai, Bassem Sellami, Sadok Ben Yahia
Veröffentlicht in: Proceedings of the 19th International Conference on Software Technologies, 2024
Herausgeber: SCITEPRESS - Science and Technology Publications
DOI: 10.5220/0012752600003753

Digital Battery Passport as an Enabler of Environmental Impact Assessment in Electric Vehicle Applications (öffnet in neuem Fenster)

Autoren: Cyrine Soufi, Tedjani Mesbahi, Ahmed Samet
Veröffentlicht in: 2023 IEEE Vehicle Power and Propulsion Conference (VPPC), 2024
Herausgeber: IEEE
DOI: 10.1109/VPPC60535.2023.10403389

Lecture Notes in Computer Science (öffnet in neuem Fenster)

Autoren: Amel Hidouri, Slimane Arbaoui, Ahmed Samet, Ali Ayadi, Tedjani Mesbahi, Romuald Boné, François de Bertrand de Beuvron
Veröffentlicht in: Lecture Notes in Computer Science, Computational Science – ICCS 2024, 2024, ISSN 0302-9743
Herausgeber: Springer Verlag
DOI: 10.1007/978-3-031-63783-4_14

Suche nach OpenAIRE-Daten ...

Bei der Suche nach OpenAIRE-Daten ist ein Fehler aufgetreten

Es liegen keine Ergebnisse vor

Mein Booklet 0 0