Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

New implicit-surface Finite Element Methods to discover universal mechanisms of animal embryo development

Objectif

All living organisms emerge from a single cell, the zygote. In early embryo development of animals, the interplay of cell surface dynamics, polarity proteins and intracellular flows forms distinct polarity domains, which the cell uses to specify the fate of its daughter cells. A classical biological model to learn how animal cells polarise is the 1-mm long C. elegans roundworm. Establishment of cell polarity in the C. elegans zygote is well studied, yet the biophysical mechanisms controlling cell polarity beyond that stage remain largely unexplored. Biophysical experiments and Finite Element (FE) models could together elucidate this matter. However, FE models of multicellular morphogenesis, other than rare, rely on explicit surface descriptions. Explicit methods are not ideal to simulate cell polarity at the multicellular scale, because they can hardly deal simultaneously with 3D foamlike geometries, coupled surface-bulk physics and topology changes. Conversely, FE methods based on implicit surfaces have recently shown convincing potential to bypass this weakness. In this project, I will launch a new implicit-surface FE paradigm to simulate early embryo development and I will apply it to gain new insights on the patterning of C. elegans embryos. To this end, I will pioneer implicit-surface FE methods for coupled surface-bulk dynamics in foamlike geometries. The success of the project is ensured by joining leading expertise in implicit-surface FEs from myself, biophysics of morphogenesis from my supervisor, and patterning in C. elegans embryos from my external collaborator. I will be based at the Center for Interdisciplinary Research in Biology of the CNRS, located at Collège de France; a unique and ideal place to create new synergies between a FE researcher like me, biophysicists and cell biologists, as well as to grow and diversify my scientific and transferrable skills to become one of the few independent leaders in FEs for multicellular morphogenesis in Europe.

Champ scientifique

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.

Coordinateur

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Contribution nette de l'UE
€ 211 754,88
Adresse
RUE MICHEL ANGE 3
75794 Paris
France

Voir sur la carte

Région
Ile-de-France Ile-de-France Paris
Type d’activité
Research Organisations
Liens
Coût total
Aucune donnée