Descripción del proyecto
Restauración traqueal: matrices tubulares impresos en tres dimensiones que favorecen el crecimiento de nuevas células
La tráquea transporta el aire hacia y desde los pulmones. Se trata de un conducto de gran longitud, revestido de células que producen mucosa, que está reforzado por anillos cartilaginosos en forma de C que lo sostienen y confieren flexibilidad. Las lesiones traqueales son ahora más frecuentes debido a la intubación mecánica relacionada con la COVID-19 y, en general, pueden ser potencialmente mortales. En la actualidad, los implantes para reparar lesiones graves se debilitan con el tiempo y no favorecen la formación de tejido nuevo. En el proyecto iTRACH, que cuenta con el apoyo de las acciones Marie Skłodowska-Curie, se pretende abordar esta cuestión mediante el desarrollo y la caracterización de matrices tubulares prevascularizadas basadas en células impresas en tres dimensiones, que se han diseñado para imitar la biomecánica traqueal y favorecer el crecimiento de tejidos traqueales.
Objetivo
Tracheal damage is often life-threatening, and its incidence has increased due to invasive mechanical intubation of COVID-19 patients. Short defects undergo a surgical procedure (anastomosis), but this is not feasible for extensive defects. While bioengineered approaches for such defects have been investigated, there has been little translation into the clinic as implants weaken over time and fail to support the formation of neotracheal tissues. I aim to solve this problem by developing and characterising 3D printed tubular scaffolds for use as medical devices for tracheal restoration via a Global Fellowship involving Royal College of Surgeons in Ireland and Boston University, followed by a non-academic placement in CellInk. Scaffolds will be designed to mimic tracheal biomechanics and will be extensively characterised. Induced pluripotent stem cells (iPSCs) will be used to develop a pre-vascularised mature respiratory epithelium on disc scaffolds in combination with endothelial progenitors and human mesenchymal stem cells (hMSCs). The tri-culture will then be moved into the tubular design and the pre-vascularised mucosal substitute will be grown and assessed in vitro as an approach for ex vivo seeding of tracheal grafts prior to implantation. The ability of the tubular scaffold to support the growth of cartilage tissues will be assessed using a combination of bioprinting and differentiation of hMSCs. iTRACH will provide me with crucial training in advanced research skills (iPSCs, stem cell biology, biomaterials & 3D printing) and transferrable skills (Intellectual Property, Project Management, Entrepreneurship, Professional Enhancement and Science Communication). This fellowship will provide me with the required technical and complementary skills to enhance my employability and to allow me to transition into a research position in a leading biomedical company, while also allowing for the possibility of me staying in an academic role with links to industry.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- ciencias socialeseconomía y empresagestión y empresasemprendimiento
- ciencias naturalesciencias biológicasbiofísica
- ingeniería y tecnologíabiotecnología industrialbiomaterial
- ciencias médicas y de la saludbiotecnología médicaimplantes
Para utilizar esta función, debe iniciar sesión o registrarse
Palabras clave
Programa(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Régimen de financiación
HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global FellowshipsCoordinador
2 Dublin
Irlanda