Description du projet
Équilibrer équité et précision dans le développement de l’apprentissage automatique éthique
Concevoir des algorithmes d’apprentissage automatique équitables n’est pas chose aisée. Le défi est lié au déséquilibre entre les données de formation et les préjugés humains. Dans ce contexte, le projet FairML financé par le MSCA développera des limites oraculaires des contraintes d’équité et un compromis entre l’équité et la précision. Il entend annuler les erreurs et les biais en utilisant des classificateurs d’ensemble avec vote majoritaire. Il intègre l’optimalité de Pareto, la traçabilité des biais illégaux et la capture de l’équité à long terme afin de se conformer aux lois anti-subordination. Le projet entend induire une responsabilité morale dans la conception des algorithmes en intégrant les outils de la théorie de l’apprentissage, notamment la causalité et l’apprentissage en ligne. Ceci améliorera la compréhension scientifique et alignera les concepts d’équité sur les contreparties juridiques, ce qui a un impact sur les applications dans les domaines du recrutement, de la justice pénale et des prêts, au bénéfice de la société dans son ensemble.
Objectif
Designing fair machine learning algorithms is challenging because the training data is often imbalanced and reflects (sometimes subconscious) biases of human annotators, leading to a possible propagation of biases into future decision-making. Besides, enforcing fairness usually leads to an inevitable deterioration of accuracy due to restrictions on the space of classifiers. In this project, I will address this challenge by developing oracle bounds of fairness restraints and a Pareto-dominated trade-off between fairness and accuracy using ensemble classifiers with the majority vote, to cancel out not only errors but also biases. I will also develop illegal bias tracing and long-term fairness capturing to comply with anti-subordination lawfully, using learning theory tools including causality and online learning for moral responsibility. The central objective of this proposal is to gain a theoretical understanding of fairness and to design machine learning algorithms that simultaneously improve both fairness and accuracy. The study is essential both for improved scientific understanding of fairness in machine learning models, and for the development of fairer algorithms for the numerous application domains, such as recruitment, criminal judging, or lending. Moreover, the project also takes interdisciplinary knowledge of economics and law into account to avoid fairness concepts in machine learning from being misaligned with their legal counterparts, enlarging the impact of machine learning applications and giving back to the wider community.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2022-PF-01
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
1165 KOBENHAVN
Danemark
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.