Opis projektu
Wyważenie uczciwości i dokładności przy rozwoju etycznego uczenia maszynowego
Projektowanie uczciwych algorytmów uczenia maszynowego nie jest łatwym zadaniem. Wynika to między innymi z niewyważonych danych treningowych oraz ludzkich uprzedzeń. W tym kontekście w ramach finansowanego przez MSCA projektu FairML opracowane zostaną granice schematów przewidywania ograniczających sprawiedliwość oraz kompromis między sprawiedliwością a dokładnością. Wykorzystanie klasyfikatorów zespołowych z głosowaniem większościowym ma pozwolić na wyeliminowanie błędów i uprzedzeń. Dodatkowo rozwiązanie uwzględnia optymalność Pareto, śledzenie nielegalnej stronniczości i długoterminowe rejestrowanie sprawiedliwości w celu zadbania o zgodność z przepisami przeciwdziałającymi uprzywilejowaniu. Poprzez integrację narzędzi teorii uczenia się, w tym przyczynowości i uczenia online, projekt ma umożliwić dbanie o moralną odpowiedzialność przy tworzeniu algorytmów. Pozwala to na poszerzenie wiedzy naukowej oraz dopasowanie koncepcji sprawiedliwości do odpowiedników prawnych, co ma istotne znaczenie dla zastosowań w dziedzinie rekrutacji, wymiarze sprawiedliwości w sprawach karnych i udzielaniu pożyczek, przynosząc korzyści całemu społeczeństwu.
Cel
Designing fair machine learning algorithms is challenging because the training data is often imbalanced and reflects (sometimes subconscious) biases of human annotators, leading to a possible propagation of biases into future decision-making. Besides, enforcing fairness usually leads to an inevitable deterioration of accuracy due to restrictions on the space of classifiers. In this project, I will address this challenge by developing oracle bounds of fairness restraints and a Pareto-dominated trade-off between fairness and accuracy using ensemble classifiers with the majority vote, to cancel out not only errors but also biases. I will also develop illegal bias tracing and long-term fairness capturing to comply with anti-subordination lawfully, using learning theory tools including causality and online learning for moral responsibility. The central objective of this proposal is to gain a theoretical understanding of fairness and to design machine learning algorithms that simultaneously improve both fairness and accuracy. The study is essential both for improved scientific understanding of fairness in machine learning models, and for the development of fairer algorithms for the numerous application domains, such as recruitment, criminal judging, or lending. Moreover, the project also takes interdisciplinary knowledge of economics and law into account to avoid fairness concepts in machine learning from being misaligned with their legal counterparts, enlarging the impact of machine learning applications and giving back to the wider community.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Słowa kluczowe
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) HORIZON-MSCA-2022-PF-01
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaKoordynator
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
1165 KOBENHAVN
Dania
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.