Projektbeschreibung
Fairness und Genauigkeit bei der Entwicklung von ethischem maschinellem Lernen abwägen
Es ist nicht einfach, faire Algorithmen für das maschinelle Lernen zu realisieren. Die Herausforderungen liegen in den unausgewogenen Trainingsdaten und menschlichen Verzerrungen. In diesem Zusammenhang werden im Rahmen des über die Marie-Skłodowska-Curie-Maßnahmen finanzierten Projekts FairML Orakelgrenzen der Fairnessbeschränkungen und einen Kompromiss zwischen Fairness und Genauigkeit entwickelt. Durch die Verwendung von Ensemble-Klassifikatoren mit Mehrheitsentscheidungen sollen Fehler und Verzerrungen beseitigt werden. Außerdem beinhaltet es Pareto-Optimalität, die Verfolgung illegaler Verzerrungen und die Erfassung langfristiger Fairness, um die Anti-Subordinationsgesetze einzuhalten. Durch die Integration von Instrumenten der Lerntheorie, einschließlich Kausalität und Online-Lernen, zielt das Projektteam auf die moralische Verantwortung bei der Entwicklung von Algorithmen ab. Dies verbessert das wissenschaftliche Verständnis und gleicht Fairnesskonzepte mit juristischen Gegenstücken ab, was sich auf Anwendungen in den Bereichen Personalbeschaffung, Strafjustiz und Kreditvergabe auswirkt und der Gesellschaft im Allgemeinen zugute kommt.
Ziel
Designing fair machine learning algorithms is challenging because the training data is often imbalanced and reflects (sometimes subconscious) biases of human annotators, leading to a possible propagation of biases into future decision-making. Besides, enforcing fairness usually leads to an inevitable deterioration of accuracy due to restrictions on the space of classifiers. In this project, I will address this challenge by developing oracle bounds of fairness restraints and a Pareto-dominated trade-off between fairness and accuracy using ensemble classifiers with the majority vote, to cancel out not only errors but also biases. I will also develop illegal bias tracing and long-term fairness capturing to comply with anti-subordination lawfully, using learning theory tools including causality and online learning for moral responsibility. The central objective of this proposal is to gain a theoretical understanding of fairness and to design machine learning algorithms that simultaneously improve both fairness and accuracy. The study is essential both for improved scientific understanding of fairness in machine learning models, and for the development of fairer algorithms for the numerous application domains, such as recruitment, criminal judging, or lending. Moreover, the project also takes interdisciplinary knowledge of economics and law into account to avoid fairness concepts in machine learning from being misaligned with their legal counterparts, enlarging the impact of machine learning applications and giving back to the wider community.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) HORIZON-MSCA-2022-PF-01
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenKoordinator
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
1165 KOBENHAVN
Dänemark
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.