Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Deformation Theory of infinite-type hyperbolic manifolds

Descripción del proyecto

Múltiplos hiperbólicos de tipo infinito: topología, geometría y teoría conforme de campos

La geometría hiperbólica es una geometría no euclidiana en la que la suma de los ángulos de un triángulo es inferior a 180° y no todos los triángulos tienen la misma suma. La conexión entre la geometría hiperbólica y la geometría tridimensional convencional ha dado lugar a importantes resultados matemáticos. En el proyecto DefHyp, que cuenta con el apoyo de las acciones Marie Skłodowska-Curie, se examinará el espacio de métricas hiperbólicas de tres variedades que tienen un grupo fundamental no generado infinitamente, un área en la que esta conexión fundamental no se aplica. El equipo del proyecto intentará comprender la interacción entre la topología y la geometría de las variedades hiperbólicas de tipo infinito e investigar la teoría de campos conformes utilizando herramientas de la geometría hiperbólica.

Objetivo

Hyperbolic geometry, and its connection to 3-dimensional geometry, have been a key topic in contemporary mathematics, leading for instance to the resolution of the Poincaŕe Conjecture (2006) and to the Fields medals awarded to Thurston (1982), McMullen (1998), Perelman (2006, declined) and Mirzakhani (2014). The project will enter the unexplored territory that opens when removing this fundamental hypothesis. Specifically, the PI plans to attack the very challenging problem of understanding the space of hyperbolic metrics on 3-manifolds that have a non-finitely generated fundamental group. The project lies at the intersection between the study of the topology and geometry of hyperbolic 3-manifolds and is well-suited to the complementary expertise of the PI and his supervisor, professor Schlenker, the PI being an expert of the topology of infinite-type 3-manifolds and the supervisor being an expert in hyperbolic geometry. An essential aspect of this research program is understanding the interplay between the topology and the geometry of infinite-type hyperbolic manifolds with the goal to borrow insights from each side to address issues in the other. One of the first objectives is to understand, by looking at topological properties, how much of the rich theory of the finite-type setting extends to the case where the fundamental group is not finitely generated. The second objective is more geometric and plans to study infinite-type 3-manifolds by seeing them as geometric ‘limits’ of finite-type hyperbolic 3-manifolds and looking at which geometric, or topological, aspects survive in the limit. The second part of the project will involve, under the direction of professor Krasnov, is to investigate the AdS-CFT correspondence, an important conjectural relationship linking quantum gravity (formulated as M-theory) in M and conformal field theories (CFT) in the boundary of M, using tools from hyperbolic geometry, e.g. renormalised volume.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) HORIZON-MSCA-2022-PF-01

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD, OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 131 940,00
Dirección
COLLEGE GREEN TRINITY COLLEGE
D02 CX56 Dublin
Irlanda

Ver en el mapa

Región
Ireland Eastern and Midland Dublin
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Participantes (1)

Socios (1)

Mi folleto 0 0