Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Quantitative Rectifiability: from Vitushkin's conjecture to Manifold Learning

Ziel

For compact planar sets, an analogue to the classic travelling salesman problem is: when can all points in a compact set E be traversed by a rectifiable curve? and how long should such a curve be? P. Jones came up with an answer in his influential Analyst's Travelling Salesman Theorem (ATST). Recent work by the PI and collaborators suggest that fundamental questions at the interface between Geometric Measure Theory (GMT), Harmonic Analysis (HA), PDEs and Machine Learning (ML) have at their core establishing higher dimensional analogues of Jones' ATST. This proposal takes up this challenge by focussing onto three concrete investigations: 1) We aim at solving a long-standing and notoriously difficult conjecture of Vitushkin on the connection between analytic capacity and Favard length. As a result of our strategy, we will prove a quantification of the classical Besicovitch-Federer projections theorem. 2) We study the interplay between the geometry and the differentiability structure a set can support, resulting in a) a geometric characterisation of domains admitting a Sobolev trace theorem, and b) a geometric converse of Rademacher's theorem, which answers a notable open question in the David-Semmes theory of uniform rectifiability.
3) We study the geometry of point clouds by developing a corona-type construction which tests whether the data points lie near a parametrisable surface; this is a way of testing the manifold hypothesis, relied upon by most nonlinear dimensionality reduction algortihms in data analysis.
Our framework provide a common language within which we tackle these diverse issues. Hence, achieving our objectives will not only result in major subject-specific breakthroughs, but, just as importantly, will develop and expand this `language', thus providing fertile ground for multidisciplinary interactions to take place.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) HORIZON-MSCA-2022-PF-01

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Koordinator

UNIVERSIDAD DEL PAIS VASCO/ EUSKAL HERRIKO UNIBERTSITATEA
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 165 312,96
Adresse
BARRIO SARRIENA S N
48940 LEIOA
Spanien

Auf der Karte ansehen

Region
Noreste País Vasco Gipuzkoa
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten
Mein Booklet 0 0