CORDIS - Risultati della ricerca dell’UE
CORDIS

Modular Industrial Large-scaLE quaNtum computing with trapped IONs, phase 1

Descrizione del progetto

Importanti progressi verso un calcolo quantistico veramente scalabile

Per sfruttare l’immensa potenza del calcolo quantistico è necessario effettuare una transizione da configurazioni sperimentali a solide tecnologie di livello industriale. Alla luce di tale premessa, il progetto Millenion-SGA1, finanziato dall’UE, si propone di colmare questa lacuna concentrandosi sulla scalabilità modulare e sull’accessibilità dei computer quantistici a ioni intrappolati. Partendo dal successo ottenuto con il dimostratore di computer quantistico a 50 qubit, Millenion-SGA1 amplia i limiti offrendone uno a ioni intrappolati a 100 qubit completamente automatizzato, con capacità senza precedenti. Oltre all’hardware, il progetto si propone integrare perfettamente i processori quantistici con l’infrastruttura di calcolo ad alte prestazioni. Per democratizzare l’accesso agli strumenti di calcolo quantistico e promuovere l’innovazione collaborativa, Millenion-SGA1 sta creando un percorso con accessibilità al cloud destinato ai kit di sviluppo del software quantico, stabilendo inoltre la connettività a lungo raggio tra i processori quantistici.

Obiettivo

The MILLENION project focuses on modular scalability and accessibility aspects of trapped-ion quantum computers (QCs), tackling the transition from current laboratory-based experiments to industry-grade quantum computing technologies with technology readiness level above 8. The envisaged platform, which builds on top of the rack-mounted 50-qubit QC demonstrator realised in the flagship project AQTION, will offer a quantum advantage for various use-cases in a fully automated 100-qubit ion-trap QC. Our consortium will aggressively pursue disruptive development goals: (a) changing from one-dimensional strings of ions to two-dimensional arrays will allow us to support up to100 qubits; (b) consistently encoding quantum information in the electronic ground state of ion qubits enables error rates smaller than 10-3 per gate operation compatible with fault-tolerant error correction; and (c) implementing parallel gate operations will enable larger algorithmic depth. The new demonstrator devices will be equipped with a hardware-optimised firmware suite and will be integrated in a high-performance computing (HPC) infrastructure to realise a QC/HPC solution, supporting standardised interfaces to various quantum software development kits with cloud accessibility. Finally, we will pave the way to scalable quantum computing by introducing long-range connectivity between quantum processors. We will combine these quantum information techniques with trap fabrication and packaging technologies which integrate optical and electronic components to achieve stable long-term operation in an industrial environment. These scientific and technological advances will provide a powerful hardware platform that can be exploited by partnering quantum software Within this project, the ion-trap quantum computing platform will be extended to push towards 100 qubits, realize fault-tolerant performance levels, and pursue the demonstration of a European quantum advantage.

Coordinatore

UNIVERSITAET INNSBRUCK
Contribution nette de l'UE
€ 4 189 748,75
Indirizzo
INNRAIN 52
6020 Innsbruck
Austria

Mostra sulla mappa

Regione
Westösterreich Tirol Innsbruck
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 4 189 748,75

Partecipanti (13)