Description du projet
Une nouvelle conception de qubits pour une informatique quantique évolutive
L’informatique quantique est confrontée à d’importants défis, dont les temps de cohérence très courts des qubits, qui empêchent la correction des erreurs et limitent la fiabilité des calculs. Le projet QuKiT, financé par le CEI, se propose de développer un nouveau type de qubit à l’aide d’une approche hybride. Il s’agira de combiner des supraconducteurs et des semi-conducteurs pour améliorer la stabilité et la résistance aux erreurs. En s’appuyant sur des systèmes topologiquement protégés, les chercheurs entendent obtenir des temps de cohérence et une fidélité opérationnelle élevés. L’approche de QuKiT promet non seulement une amélioration des performances, mais ouvre également la voie à une informatique quantique évolutive.
Objectif
Most mainstream approaches to quantum computing are limited by short qubit coherence times at a level that impedes the implementation of quantum error correction. A truly viable approach to achieving fault tolerant computation, and solving socially relevant problems, thus requires inherently better qubits. In this project, we propose to realize a new type of qubit based on a hybrid between superconductors and semiconductors – two leading platforms at this time. The qubit will be engineered such that the states of this qubit are immune to most decoherence mechanisms currently limiting mainstream implementations of a quantum computer. We plan to achieve this by encoding quantum information in a topologically protected system. Such a system will be engineered by creating arrays of quantum dots with superconducting coupling (the so called Kitaev chain) in two-dimensional electron gases (2DEGs). Embedding the Kitaev chain in a transmon architecture will allow us to perform single-qubit and two-qubit operations using well-established control-techniques from the field of superconducting qubits. Combining these control elements with record long qubit coherence times we expect high gate fidelities beyond the state of the art. The choice of using the 2DEG platform naturally lends itself to scalability in the longer term, and we plan to develop a clear roadmap for future scaling within the course of the project.
Champ scientifique
Not validated
Not validated
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwarequantum computers
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- natural sciencesphysical scienceselectromagnetism and electronicssuperconductivity
Programme(s)
- HORIZON.3.1 - The European Innovation Council (EIC) Main Programme
Régime de financement
HORIZON-EIC - HORIZON EIC GrantsCoordinateur
2628 CN Delft
Pays-Bas