Project description
Numerical methods for next-generation partial differential equation simulators
Partial differential equation problems, such as the ones encountered in magnetohydrodynamics and geological flows, are challenging due to the presence of incomplete differential operators, nonlinear behaviours, hybrid-dimensional phenomena and moving interfaces. The ERC-funded NEMESIS project aims to create new numerical simulators to tackle these difficulties simultaneously. The research programme is divided into four interconnected clusters with specific goals, including developing a polytopal exterior calculus framework, designing the corresponding multi-level solvers and discrete functional analysis tools, and developing proof-of-concept applications in magnetohydrodynamics and geological flows. The results will lead to innovations and improvements in design and prediction capabilities in engineering and applied sciences.
Objective
Relevant partial differential equations (PDEs) problems of the 21st century, including those encountered in magnetohydrodynamics and geological flows, involve severe difficulties linked to: the presence of incomplete differential operators related to Hilbert complexes; nonlinear and hybrid-dimensional physical behaviors; embedded/moving interfaces. The goal of the NEMESIS project is to lay the groundwork for a novel generation of numerical simulators tackling all of the above difficulties at once. This will require the combination of skills and knowledge resulting from the synergy of the PIs, covering distinct and extremely technical fields of mathematics: numerical analysis, analysis of nonlinear PDEs, and scientific computing. The research program is structured into four tightly interconnected clusters, whose goals are: the development of Polytopal Exterior Calculus (PEC), a general theory of discrete Hilbert complexes on polytopal meshes; the design of innovative strategies to boost efficiency, embedded into a general abstract Multilevel Solvers Convergence Framework (MSCF); the extension of the above tools to challenging nonlinear and hybrid-dimensional problems through Discrete Functional Analysis (DFA) tools; the demonstration through proof-of-concept applications in magnetohydrodynamics (e.g. nuclear reactor models or aluminum smelting) and geological flows (e.g. flows of gas/liquid mixtures in underground reservoirs with fractures, as occurring in CO2 storage). This project will bring key advances in numerical analysis through the introduction of entirely novel paradigms such as the PEC and DFA, and in scientific computing through MSCF. The novel mathematical tools developed in the project will break long-standing barriers in engineering and applied sciences, and will be implemented in a practitioner-oriented open-source library that will boost design and prediction capabilities in these fields.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences mathematics pure mathematics mathematical analysis differential equations partial differential equations
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC-SYG - HORIZON ERC Synergy Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-SyG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
34090 Montpellier
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.