European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Environmental control of physiology through the brain-gut axis

Description du projet

Les complexités de l’axe cerveau-intestin

L’axe cerveau-intestin est un système de communication bidirectionnel entre le système nerveux central, y compris le cerveau, et le système nerveux entérique, un réseau complexe de neurones de l’appareil digestif. Cette interaction joue un rôle crucial dans la régulation de divers processus physiologiques, notamment la digestion, l’appétit et le métabolisme énergétique. Cependant, la complexité anatomique de cet axe ne permet pas une compréhension approfondie des mécanismes cellulaires et moléculaires qui le contrôlent. Financé par le Conseil européen de la recherche, le projet GutSense utilisera le modèle de la drosophile pour révéler la plasticité fonctionnelle des neurones entériques adultes, particulièrement utiles pour ajuster la prise alimentaire en réponse aux besoins énergétiques. En outre, les chercheurs étudieront comment les facteurs environnementaux, tels que l’alimentation et l’activité physique, influencent l’axe cerveau-intestin.

Objectif

A series of tightly controlled processes ensure that energy is either stored or consumed within an organism. This control is central to survival and prosperity of the animal, yet we only partly understand it. Communication between the brain and the gut, the so called “brain-gut axis”, has emerged as a key player in regulating aspects of animal physiology by directly affecting energy stores. Nevertheless, due to the astonishing anatomical complexity of the underlying neural circuits in mammals, an in depth understanding of the cellular and molecular mechanisms controlling this axis is still lacking. Using the simpler yet functionally comparable Drosophila brain-gut axis as a model system, I have recently shown that adult enteric neurons are functionally plastic. This constitutes a physiological feature highly relevant for the adjustment of food intake by the animal to meet energy demands. I explored this in females in the context reproduction, where mechanisms underlying appetite regulation are evolutionary conserved across multiple species. Building on my expertise, I will now investigate the long-standing question on how environmental factors, such as dietary habits or levels of physical activity, impact the function of the brain-gut axis. For GutSense, I will leverage the unique experimental opportunities available in Drosophila to address the role of gut-neurons in metabolic adaptation: (a) characterize neurons which respond to these environmental cues, and the relevant neural circuits and mediators (b) identify the target tissues and the nature of inter-organ signals involved (c) investigate the impact of timing and duration of exposure to these factors, on metabolic adaptation. Through these, I will uncover basic and likely evolutionary conserved mechanisms and better understand the context-dependent tolerance of metabolic challenges. Such insight can lead the way in elucidating the contribution of brain-gut networks to the development of pathophysiology.

Régime de financement

HORIZON-ERC - HORIZON ERC Grants

Institution d’accueil

INSTITUT DU CERVEAU ET DE LA MOELLE EPINIERE
Contribution nette de l'UE
€ 1 929 674,00
Adresse
BOULEVARD DE L'HOPITAL 47
75013 Paris
France

Voir sur la carte

Région
Ile-de-France Ile-de-France Paris
Type d’activité
Research Organisations
Liens
Coût total
€ 1 929 674,00

Bénéficiaires (1)