Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Real-time inversion using self-explainable deep learning driven by expert knowledge

Description du projet

Des algorithmes d’apprentissage profond pour résoudre les problèmes inverses

Les problèmes inverses utilisent des équations différentielles partielles (EDP) pour établir des liens entre des paramètres inconnus et des données expérimentales. Ils trouvent de nombreuses applications, aussi diverses que l’évaluation de la croissance du cancer, la sécurité des infrastructures civiles et l’amélioration de la production d’énergie géothermique. Néanmoins, les approches d’apprentissage profond (AP) pour les EDP présentent des limites, notamment un manque de fondements théoriques et d’interprétabilité, ce qui entrave leur intégration dans des applications à fort enjeu. Le projet IN-DEEP, financé par le programme MSCA, réunit des doctorants et des scientifiques dans le but de former des étudiants de troisième cycle à l’élaboration, à la mise en œuvre et à l’exploitation d’algorithmes d’apprentissage profond fondés sur les connaissances. Ces algorithmes contribueront à résoudre rapidement et avec précision les problèmes inverses posés par les EDP. IN-DEEP s’est engagé à développer des solveurs avancés reposant sur l’AP pour les EDP présentant un intérêt sociétal et industriel important.

Objectif

IN-DEEP is a European Doctoral Network composed of nine doctoral candidates (DCs) and top scientists with complementary areas of expertise in applied mathematics, artificial intelligence, high-performance computing, and engineering applications. Its main goal is to provide high-level training to the nine DCs in designing, implementing, and using explainable knowledge-driven Deep Learning (DL) algorithms for rapidly and accurately solving inverse problems governed by partial differential equations (PDEs).

Inverse problems in which the unknown parameters are connected to experimental measurements through PDEs cover from medical applications - like cancer growth assessment - to the safety of civil infrastructures, and green geophysical applications such as geothermal energy production. Their application value is measured in human lives and society's well-being, which goes beyond any quantifiable amount of money. This is why equipping a new generation of specialists with highly-demanded skills for the upcoming transition toward safe and robust AI-based technologies is imperative.

Despite the promising results in many applications, DL for PDEs has severe limitations. The most troublesome is its lack of a solid theoretical background and explainability, which prevents potential users from integrating them into high-risk applications.
IN-DEEP aims to remove these constraints to unleash the full potential of DL algorithms for PDEs. We will achieve this by: (a) focusing on emerging applications of DL for PDEs with immense societal and/or industrial value, (b) designing mathematics-infused advanced solvers to address them efficiently, and (c) involving, from the beginning, industrial and technological agents which can monitor, upscale, and exploit this knowledge. On the way, we shall establish the foundations of a better knowledge exchange ecosystem amongst the main academic and industrial actors within Europe, disseminating the results worldwide.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-TMA-MSCA-DN - HORIZON TMA MSCA Doctoral Networks

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2022-DN-01

Voir tous les projets financés au titre de cet appel

Coordinateur

UNIVERSIDAD DEL PAIS VASCO/ EUSKAL HERRIKO UNIBERTSITATEA
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 251 971,20
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Participants (7)

Partenaires (1)

Mon livret 0 0