Project description
Precision medicine in brain and spinal cord injuries
Traumatic brain/spinal cord injuries and strokes remain leading causes of death and disability, with limited treatment options due to the complexities of monitoring and understanding the underlying pathophysiological processes. With the support of Marie Skłodowska-Curie Actions, the SOPRANI project is a collaborative effort between clinical, biomedical, statistical, and engineering sciences. It seeks to tackle this challenge head-on. By developing novel dynamic insult monitoring technologies and integrating disease models and insult/treatment ontologies into smart multimodality monitor software, the project aims to provide improved decision support for clinicians. Access to relevant animal models and large patient databases will aid in the development of real-time autoregulation monitors and statistical disease models, paving the way for precision medicine in acute central nervous system injuries.
Objective
In traumatic brain/spinal cord injury and stroke – major causes of death and disability -, progress has come from monitored intensive care and swift action upon detection of secondary insults. Although it is possible to monitor intracranial pressure, the brain & spinal cord still behave as a black box. Current measurable signals only roughly represent ongoing pathophysiological processes, and dynamic insults (eg impaired autoregulation and neurovascular unit dysfunction) cannot be reliably monitored. As a result, no therapeutic action has been shown to be beneficial in randomized patient trials. The project goal is to prepare novel dynamic insult monitoring technologies and to develop improved decision support by integrating disease models and insult/treatment ontologies into smart multimodality monitor software. A parallel goal is to unite high level expertise in clinical, biomedical, statistical and engineering sciences into one network to boost the next generation of researchers to substantially advance the field of neuromonitoring. The network includes 3 relevant animal models and access to large (multi)center patient databases with injury, treatment & outcome data (eg Center-TBI). Direct autoregulation visualization in the cranial window piglet model will be elaborated to improve circulation models and relations with measurable high resolution signals to develop a real-time autoregulation monitor. These metrics will be associated with spreading depolarizations, vasospasm, ischemia and brain function in the rodent stroke models. The models and monitor technology are highly transferrable to patient care. Patient data will be used to build multidimensional statistical disease models. Insult and treatment ontologies will be developed in parallel with insult prediction and insult burden visualization concepts. Smart monitor platforms that aid precision medicine in acute central nervous system injury close to trials and future innovation leaders are expected results.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences knowledge engineering ontology
- natural sciences computer and information sciences software
- natural sciences computer and information sciences databases
- medical and health sciences basic medicine neurology stroke
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-DN - HORIZON TMA MSCA Doctoral Networks
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2022-DN-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3000 LEUVEN
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.