European Commission logo
English English
CORDIS - EU research results
CORDIS

BioBone: Bioactive Hydrogel-based Implants to Induce Bone Regeneration

Project description

Effective bone regeneration following bone cancer resection

Current gold-standard procedures for treating bone cancers that primarily affect young individuals such as osteosarcoma and Ewing sarcoma, involve titanium implants. However, these often result in incomplete reconstruction, leading to complications and require re-operations. Funded by the European Research Council, the BioBone project introduces a cutting-edge approach that integrates 3D-printed porous titanium implants with bioactive scaffolds. The generated solution offers an enhanced microenvironment for efficient bone regeneration after tumour resection. Following optimisation, researchers will test the biocompatibility and osteointegration potential of this solution in vivo. Envisioned as a significant improvement in post-resection care, this novel technology is expected to improve the quality of life for bone cancer patients.

Objective

Osteosarcoma and Ewing sarcoma are the most common types of cancer in patients younger than 30 years. The gold standard treatment is bone tumor resection followed by reconstruction of the tissue, thereby allowing the salvage of the limb. Titanium and its alloys are mostly used in such orthopedic surgeries due to their biocompatibility and excellent mechanical properties. A novel, cutting-edge technology of patient-specific implants, 3-dimensional (3D) printed porous titanium implants, was recently introduced to clinical use. Yet, even several years after surgery, the resected section is not fully reconstructed, leading to further medical complications often requiring re-operations. A promising solution is the combination of titanium porous implants with bioactive scaffolds to support bone regeneration following tumor resection. Here, we aim to fabricate a 3D-printed porous titanium implant incorporated with patent-protected bioactive materials we have developed in the scope of the PersonalBone ERC-StG project to provide an optimal microenvironment for stimulating bone regeneration following bone tumor resection. For this purpose, we will optimize the formulation as well as the method of incorporation into 3D-printed titanium implants. The incorporated implants will be tested for biocompatibility and osteointegration in critical-size bone defect models in vivo. As we recently demonstrated for the novel materials, we will examine several success criteria, which will be refined according to input from orthopedic oncology surgeons who routinely perform tumor resections. This novel technology is envisioned to significantly advance the current treatments offered following bone resection, thereby considerably reducing the risk of further complications and offering a major improvement in the quality of life of patients recovering from bone cancer.

Keywords

Host institution

TEL AVIV UNIVERSITY
Net EU contribution
€ 120 000,00
Total cost
No data

Beneficiaries (2)