Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Theoretical Understanding of Classic Learning Algorithms

Descrizione del progetto

Sviluppare algoritmi di apprendimento classici più veloci

Il progresso della tecnologia di apprendimento automatico ha portato benefici senza precedenti in diversi settori, a vantaggio di un’automazione migliore e più accessibile. Attualmente, gli algoritmi di apprendimento si dividono in apprendimento profondo, che eccelle in ambienti ricchi di dati, e algoritmi classici, più adatti ad ambienti poveri di dati. In questo contesto, il progetto TUCLA, finanziato dal CER, cerca di approfondire gli algoritmi classici e di migliorarne la velocità e l’efficacia. Il progetto si concentra sullo studio di algoritmi fondamentali come il bagging e il boosting per stabilire un quadro teorico di apprendimento per la progettazione di algoritmi innovativi di boosting e bagging.

Obiettivo

Machine learning has evolved from being a relatively isolated discipline to have a disruptive influence on all areas of science, industry and society. Learning algorithms are typically classified into either deep learning or classic learning, where deep learning excels when data and computing resources are abundant, whereas classic algorithms shine when data is scarce. In the TUCLA project, we expand our theoretical understanding of classic machine learning, with a particular emphasis on two of the most important such algorithms, namely Bagging and Boosting. As a result of this study, we shall provide faster learning algorithms that require less training data to make accurate predictions. The project accomplishes this by pursuing several objectives:

1. We will establish a novel learning theoretic framework for proving generalization bounds for learning algorithms. Using the framework, we will design new Boosting algorithms and prove that they make accurate predictions using less training data than what was previously possible. Moreover, we complement these algorithms by generalization lower bounds, proving that no other algorithm can make better use of data.

2. We will design parallel versions of Boosting algorithms, thereby allowing them to be used in combination with more computationally expensive base learning algorithms. We conjecture that success in this direction may lead to Boosting playing a more central role also in deep learning.

3. We will explore applications of the classic Bagging heuristic. Until recently, Bagging was not known to have significant theoretical benefits. However, recent pioneering work by the PI shows that Bagging is an optimal learning algorithm in an important learning setup. Using these recent insights, we will explore theoretical applications of Bagging in other important settings.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-ERC - HORIZON ERC Grants

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2023-COG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

AARHUS UNIVERSITET
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 999 288,00
Indirizzo
NORDRE RINGGADE 1
8000 Aarhus C
Danimarca

Mostra sulla mappa

Regione
Danmark Midtjylland Østjylland
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 999 288,00

Beneficiari (1)

Il mio fascicolo 0 0