CORDIS - Forschungsergebnisse der EU
CORDIS

Understanding mechanisms of Transcription Factor cooperativity across scales

Projektbeschreibung

Ein Plan zur Entschlüsselung der Geheimnisse der Zellregulation

In der Welt der Zellregulierung spielen Transkriptionsfaktoren eine wichtige Rolle, indem sie die für die zelluläre Identität und Gesundheit entscheidende Genexpression steuern. Wie die Transkriptionsfaktoren bei der Aktivierung der Transkription gemeinsam agieren, bleibt jedoch ein Rätsel. In diesem Zusammenhang werden über das ERC-finanzierte Projekt TFCoop Hunderttausende Störungen von Transkriptionsfaktoren in verwandten Netzwerken untersucht. Konkret wollen die Forschenden die organisatorischen Regeln für die Kooperativität von Transkriptionsfaktoren herausfinden. Durch den Einsatz innovativer Verfahren wie Optogenetik und Einzelmolekülgenomik versucht TFCoop, den genetischen Bauplan zu entschlüsseln, der den zellulären Identitäten zugrunde liegt. Ein Erfolg könnte die regenerative Medizin revolutionieren und beispiellose Einblicke in die Zellmanipulation bieten.

Ziel

Transcription Factors (TFs) are critical regulators of many essential cellular functions such as the acquisition of cell identities in healthy tissues and their dysregulation in disease. Transcriptional activation of a gene typically requires the cooperative binding of multiple TFs, that subsequently recruit various additional cofactors. Genomics has enabled the generation of a near-complete annotation of the cis-regulatory elements and TFs binding them across cell types. Yet, the precise function of each TF in the process and how these functionalities are assembled to activate transcription is an important open question. Here we postulate that despite strong cell-type specificity, the formation of TF cooperativity modules on DNA relies on general principles that are shared across cell-types. In TFCoop we propose to formalise these organizational rules by probing the effect of hundreds of thousands of perturbations of individual TFs on the regulatory activity of their network. We will apply time-resolved nuclear depletion using optogenetics in parallel for multiple TFs of two related networks, and contrast the primary effects of their depletion genome-wide. In a complementary approach, we will develop a reductionist system to study the function of tens of thousands of individual or controlled combinations of TF motifs when inserted into the genome. We will leverage the unique properties of single molecule genomics to measure the contribution of each TF to the activity of multiple components of the regulatory system, across multiple loci simultaneously. This will be followed by factor analysis and deep learning to integrate this large collection of primary effects of TF perturbation and identify the general principles of their assembly into cooperativity networks. Upon success of the project, the resulting models will unlock the understanding of the genetic encoding of cellular identities and allow their manipulation for regenerative medicine.

Programm/Programme

Gastgebende Einrichtung

EUROPEAN MOLECULAR BIOLOGY LABORATORY
Netto-EU-Beitrag
€ 1 990 221,00
Adresse
Meyerhofstrasse 1
69117 Heidelberg
Deutschland

Auf der Karte ansehen

Region
Baden-Württemberg Karlsruhe Heidelberg, Stadtkreis
Aktivitätstyp
Research Organisations
Links
Gesamtkosten
€ 1 990 221,00

Begünstigte (1)