Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Algebraic Formula Lower Bounds and Applications

Objective

Does efficient verification imply efficient search? Can randomness provide massive speed-ups in computation? These are fundamental questions in theoretical computer science, known as P vs. NP and P vs. BPP respectively. Progress on these questions requires us to to show that certain computational problems are inherently intractable, i.e. do not admit efficient solutions. An important, and concrete, approach to such questions is to understand the complexity of algebraic problems such as the Determinant and the Permanent, in algebraic models of computation. The aim of this project is to tackle these questions head on.

Recent results of the PI and his collaborators have made progress on these problems by resolving a three-decade old open question. These results show intractability for algebraic models of bounded depth, which is a step towards P vs. NP. As a consequence, they also imply the first sub-exponential time deterministic algorithms for the important Polynomial Identity Testing (PIT) problem in these settings, which is progress towards P vs. BPP.

However, this barely scratches the surface of what we want to achieve. The aim of this project is to push beyond these state-of-the-art results in many directions. The principal goal is to prove the first lower bounds for algebraic formulas, which would be a huge breakthrough. Further, we want to improve our recently obtained lower bounds in order to devise faster PIT algorithms. We also want to show lower bounds over finite fields, and to explore the applications of such work in related areas such as algebraic proof complexity and algorithm design.

The recent results point out a new way of exploiting structural and algebraic techniques to prove lower bounds. The aim is to develop and systematically investigate these techniques, incorporating methods from related fields of mathematics such as the theory of symmetric functions and representation theory, to accomplish these goals.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-COG

See all projects funded under this call

Host institution

KOBENHAVNS UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 869 055,00
Address
NORREGADE 10
1165 KOBENHAVN
Denmark

See on map

Region
Danmark Hovedstaden Byen København
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 869 055,00

Beneficiaries (1)

My booklet 0 0