Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Algebraic Formula Lower Bounds and Applications

Cel

Does efficient verification imply efficient search? Can randomness provide massive speed-ups in computation? These are fundamental questions in theoretical computer science, known as P vs. NP and P vs. BPP respectively. Progress on these questions requires us to to show that certain computational problems are inherently intractable, i.e. do not admit efficient solutions. An important, and concrete, approach to such questions is to understand the complexity of algebraic problems such as the Determinant and the Permanent, in algebraic models of computation. The aim of this project is to tackle these questions head on.

Recent results of the PI and his collaborators have made progress on these problems by resolving a three-decade old open question. These results show intractability for algebraic models of bounded depth, which is a step towards P vs. NP. As a consequence, they also imply the first sub-exponential time deterministic algorithms for the important Polynomial Identity Testing (PIT) problem in these settings, which is progress towards P vs. BPP.

However, this barely scratches the surface of what we want to achieve. The aim of this project is to push beyond these state-of-the-art results in many directions. The principal goal is to prove the first lower bounds for algebraic formulas, which would be a huge breakthrough. Further, we want to improve our recently obtained lower bounds in order to devise faster PIT algorithms. We also want to show lower bounds over finite fields, and to explore the applications of such work in related areas such as algebraic proof complexity and algorithm design.

The recent results point out a new way of exploiting structural and algebraic techniques to prove lower bounds. The aim is to develop and systematically investigate these techniques, incorporating methods from related fields of mathematics such as the theory of symmetric functions and representation theory, to accomplish these goals.

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

HORIZON-ERC - HORIZON ERC Grants

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2023-COG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

KOBENHAVNS UNIVERSITET
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 1 869 055,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 1 869 055,00

Beneficjenci (1)

Moja broszura 0 0