Descrizione del progetto
Uno sguardo più approfondito alla trattabilità dei grafi
Nell’informatica teorica, la comprensione dell’efficienza degli algoritmi per le diverse classi di grafi costituisce un’importante sfida. Mentre sono stati compiuti progressi significativi in relazione ai grafi sparsi (come i grafi planari), molte altre classi degli stessi sono tuttora difficili da caratterizzare: la frontiera della trattabilità algoritmica è ben definita per i grafi sparsi e per quelli ordinati, ma ancora irrisolta per i grafi di altro tipo, originando una lacuna che limita lo sviluppo di algoritmi efficienti per una gamma più ampia di tipologie di grafi. Il progetto BUKA, finanziato dal CER, affronta questo problema cercando di caratterizzare tutte le classi di grafi trattabili. Il progetto esplorerà le strutture logiche alla base della trattabilità algoritmica mediante l’utilizzo di metodi avanzati in ambito di teoria della struttura dei grafi e teoria della stabilità, offrendo risultati che eserciteranno un’importanza fondamentale per gli informatici, i teorici dei grafi e i logici.
Obiettivo
The combination of methods from logic and graph theory has been extremely successful in the design of algorithms, in complexity theory, and other areas of theoretical computer science. A success story exemplifying the power of this approach is the recent development in the algorithmic structure theory of sparse graphs. In this line of research, structural results stemming from Robertson and Seymour’s graph minor theory, and the more recent sparsity theory of Nešetřil and Ossona de Mendez, were com- bined with logical methods in order to obtain a systematic understanding of tractability. An example result in this area states that every graph property definable in first order logic can be decided in linear time, for all planar graphs. Culminating a long line of research, Grohe, Kreutzer, and Siebertz gener- alized this result to all nowhere dense graph classes. Those are very general classes of sparse graphs, which include the class of planar graphs, classes of bounded maximum degree, or classes excluding a fixed minor. Moreover, this result completely delimits the tractability frontier for sparse graph classes. However, many classes are tractable, but not sparse. The recent twin-width theory, drawing on deep connections between logic and enumerative combinatorics, achieves an analogue of the result of Grohe et al. for all ordered graphs. Thus, algorithmic tractability is now understood in two contexts: of sparse graphs, and of ordered graphs. This project sets out to characterize all tractable graph classes. This requires developing a systematic understanding of the logical structure underlying algorithmic tractability. The tools I intend to apply and develop originate from graph structure theory, and from stability theory, one of the most successful areas in logic recently. The expected results will be of foundational nature, and of interest primarily to theoretical computer scientists, graph theorists, and logicians.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali matematica matematica pura matematica discreta teoria dei grafi
- scienze naturali matematica matematica pura matematica discreta combinatoria
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
HORIZON-ERC - HORIZON ERC Grants
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) ERC-2023-COG
Vedi tutti i progetti finanziati nell’ambito del bandoIstituzione ospitante
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
00-927 WARSZAWA
Polonia
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.