Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Multilingual and Cross-cultural interactions for context-aware, and bias-controlled dialogue systems for safety-critical applications

CORDIS fornisce collegamenti ai risultati finali pubblici e alle pubblicazioni dei progetti ORIZZONTE.

I link ai risultati e alle pubblicazioni dei progetti del 7° PQ, così come i link ad alcuni tipi di risultati specifici come dataset e software, sono recuperati dinamicamente da .OpenAIRE .

Risultati finali

Emerging ELOQUENCE technology- approved by the ELOQUENCE Community (si apre in una nuova finestra)

Finalized at TLR=3 stage, this report assesses emerging ELOQUENCE outputs as being respectful of EU values, with particular emphasis on gender, cultural or racial biases.

Dissemination, Communication and Exploitation Plan (si apre in una nuova finestra)

Overall DEC plan, with KPIs and benchmarks, and campaign planning. Also includes the website.

Ethics Compliance Management Report (si apre in una nuova finestra)

The Ethics requirements and compliance methodology for responsible research.

Algorithms definition, baselines, open issues and use cases (si apre in una nuova finestra)

Methodologies applied for both knowledge-based approaches and semi-supervised learning, and applicability to use cases.

Retrieval model for conversational style queries (si apre in una nuova finestra)

The methodologies of integrating conversational LLM with FIR subsystem, discussion of open research questions in the context of ELOQUENCE. Codebase implementing the FIR, evaluation of the FIR precision given conversational queries.

Dissemination, Communication and Exploitation Plan II (si apre in una nuova finestra)

Overall DEC plan, with KPIs and benchmarks, and campaign planning. Also includes the website.

Conversational LLM (si apre in una nuova finestra)

Methodologies for LLM finetuning and simulation/ augmentation of conversational training data, and applicability to use cases. Comparison with SOTA models. Codebase implementing the fine-tuning on selected datasets.

Report on linguistic expression respectful of EU values (si apre in una nuova finestra)

Report on requirements for machine-generated verbal communication respectful of European values as enshrined in Article 2 of the EU Treaty.

Pilot Requirements & Usability Evaluation (si apre in una nuova finestra)

Uses cases, requirements and outcomes for the different pilots. Summary of the set of KPIs, criteria and methodology to evaluate the ELOQUENCE usability.

Open source datasets suitable for semi-structured, unstructured and multi-turn conversations (si apre in una nuova finestra)

Requirements for semi-structured, multi-turn and unstructured dialogues, available/relevant literature review on evaluation of dialogues and description of methodology on how the fused datasets are generated

Project Management Handbook (si apre in una nuova finestra)

Management procedure, consortium communication tools and the quality and risk management plans.

Methodology for jointly training FIR and response generator (si apre in una nuova finestra)

The methodologies on interconnecting FIR and response generator, analysis of scenarios relevant to ELOQUENCE. Implementation of the FIR and response generator joint training.

ELOQUENCE DMP (si apre in una nuova finestra)

The legal aspects and the data management plan for the collection and processing of data throughout the project activities.

ELOQUENCE DMP II (si apre in una nuova finestra)

The legal aspects and the data management plan for the collection and processing of data throughout the project activities.

Pubblicazioni

Comparing Data Augmentation Methods for End-to-End Task-Oriented Dialog Systems (si apre in una nuova finestra)

Autori: Christos Vlachos, Themos Stafylakis, Ion Androutsopoulos
Pubblicato in: Findings of the Association for Computational Linguistics ACL 2024, 2024
Editore: Association for Computational Linguistics
DOI: 10.18653/V1/2024.FINDINGS-ACL.431

BESST Dataset: A Multimodal Resource for Speech-based Stress Detection and Analysis (si apre in una nuova finestra)

Autori: Jan Pešán, Vojtěch Juřík, Martin Karafiát, Jan Černocký
Pubblicato in: Interspeech 2024, 2024
Editore: ISCA
DOI: 10.21437/INTERSPEECH.2024-42

BUT systems and analyses for the ASVspoof 5 Challenge (si apre in una nuova finestra)

Autori: Johan Rohdin, Lin Zhang, Plchot Oldřich, Vojtěch Staněk, David Mihola, Junyi Peng, Themos Stafylakis, Dmitriy Beveraki, Anna Silnova, Jan Brukner, Lukáš Burget
Pubblicato in: The Automatic Speaker Verification Spoofing Countermeasures Workshop (ASVspoof 2024), 2024
Editore: ISCA
DOI: 10.21437/ASVSPOOF.2024-4

TokenVerse: Towards Unifying Speech and NLP Tasks via Transducer-based ASR (si apre in una nuova finestra)

Autori: Shashi Kumar, Srikanth Madikeri, Juan Pablo Zuluaga Gomez, Iuliia Thorbecke, Esaú Villatoro-tello, Sergio Burdisso, Petr Motlicek, Karthik Pandia D S, Aravind Ganapathiraju
Pubblicato in: Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, 2024
Editore: Association for Computational Linguistics
DOI: 10.18653/V1/2024.EMNLP-MAIN.1167

Pretraining End-to-End Keyword Search with Automatically Discovered Acoustic Units (si apre in una nuova finestra)

Autori: Bolaji Yusuf, Jan Honza Cernocky, Murat Saraçlar
Pubblicato in: Interspeech 2024, 2024
Editore: ISCA
DOI: 10.21437/INTERSPEECH.2024-1713

Parameter-Efficient Transfer Learning of Audio Spectrogram Transformers (si apre in una nuova finestra)

Autori: Umberto Cappellazzo, Daniele Falavigna, Alessio Brutti, Mirco Ravanelli
Pubblicato in: 2024 IEEE 34th International Workshop on Machine Learning for Signal Processing (MLSP), 2024
Editore: IEEE
DOI: 10.1109/MLSP58920.2024.10734776

Multitask Speech Recognition and Speaker Change Detection for Unknown Number of Speakers (si apre in una nuova finestra)

Autori: Shashi Kumar, Srikanth Madikeri, Iuliia Nigmatulina, Esaú Villatoro-Tello, Petr Motlicek, Karthik Pandia, S. Pavankumar Dubagunta, Aravind Ganapathiraju
Pubblicato in: ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024
Editore: IEEE
DOI: 10.1109/ICASSP48485.2024.10446130

Large Language Models are Strong Audio-Visual Speech Recognition Learners (si apre in una nuova finestra)

Autori: Umberto Cappellazzo, Minsu Kim, Honglie Chen, Pingchuan Ma, Stavros Petridis, Daniele Falavigna, Alessio Brutti, Maja Pantic
Pubblicato in: ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2025
Editore: IEEE
DOI: 10.1109/ICASSP49660.2025.10889251

Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction (si apre in una nuova finestra)

Autori: Sergio Burdisso, Srikanth Madikeri, Petr Motlicek
Pubblicato in: Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, 2024
Editore: Association for Computational Linguistics
DOI: 10.18653/V1/2024.EMNLP-MAIN.310

Multimodal Emotion Recognition Using Compressed Graph Neural Networks (si apre in una nuova finestra)

Autori: Tijana Đurkić, Nikola Simić, Siniša Suzić, Dragana Bajović, Zoran Perić, Vlado Delić
Pubblicato in: Lecture Notes in Computer Science, Speech and Computer, 2025
Editore: Springer Nature Switzerland
DOI: 10.1007/978-3-031-78014-1_9

BUT/JHU System Description for CHiME-8 NOTSOFAR-1 Challenge (si apre in una nuova finestra)

Autori: Alexander Polok, Dominik Klement, Jiangyu Han, Šimon Sedláček, Bolaji Yusuf, Matthew Maciejewski, Matthew S Wiesner, Lukáš Burget
Pubblicato in: 8th International Workshop on Speech Processing in Everyday Environments (CHiME 2024), 2024
Editore: ISCA
DOI: 10.21437/CHIME.2024-4

Efficient Fine-tuning of Audio Spectrogram Transformers via Soft Mixture of Adapters (si apre in una nuova finestra)

Autori: Umberto Cappellazzo, Daniele Falavigna, Alessio Brutti
Pubblicato in: Interspeech 2024, 2024
Editore: ISCA
DOI: 10.21437/INTERSPEECH.2024-38

MT-LENS: An all-in-one Toolkit for Better Machine Translation Evaluation (si apre in una nuova finestra)

Autori: Javier García Gilabert, Carlos Escolano, Audrey Mash, Xixian Liao, Maite Melero
Pubblicato in: Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations), 2025
Editore: Association for Computational Linguistics
DOI: 10.18653/V1/2025.NAACL-DEMO.6

È in corso la ricerca di dati su OpenAIRE...

Si è verificato un errore durante la ricerca dei dati su OpenAIRE

Nessun risultato disponibile

Il mio fascicolo 0 0