Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Multilingual and Cross-cultural interactions for context-aware, and bias-controlled dialogue systems for safety-critical applications

CORDIS bietet Links zu öffentlichen Ergebnissen und Veröffentlichungen von HORIZONT-Projekten.

Links zu Ergebnissen und Veröffentlichungen von RP7-Projekten sowie Links zu einigen Typen spezifischer Ergebnisse wie Datensätzen und Software werden dynamisch von OpenAIRE abgerufen.

Leistungen

Emerging ELOQUENCE technology- approved by the ELOQUENCE Community (öffnet in neuem Fenster)

Finalized at TLR=3 stage, this report assesses emerging ELOQUENCE outputs as being respectful of EU values, with particular emphasis on gender, cultural or racial biases.

Dissemination, Communication and Exploitation Plan (öffnet in neuem Fenster)

Overall DEC plan, with KPIs and benchmarks, and campaign planning. Also includes the website.

Ethics Compliance Management Report (öffnet in neuem Fenster)

The Ethics requirements and compliance methodology for responsible research.

Algorithms definition, baselines, open issues and use cases (öffnet in neuem Fenster)

Methodologies applied for both knowledge-based approaches and semi-supervised learning, and applicability to use cases.

Retrieval model for conversational style queries (öffnet in neuem Fenster)

The methodologies of integrating conversational LLM with FIR subsystem, discussion of open research questions in the context of ELOQUENCE. Codebase implementing the FIR, evaluation of the FIR precision given conversational queries.

Dissemination, Communication and Exploitation Plan II (öffnet in neuem Fenster)

Overall DEC plan, with KPIs and benchmarks, and campaign planning. Also includes the website.

Conversational LLM (öffnet in neuem Fenster)

Methodologies for LLM finetuning and simulation/ augmentation of conversational training data, and applicability to use cases. Comparison with SOTA models. Codebase implementing the fine-tuning on selected datasets.

Report on linguistic expression respectful of EU values (öffnet in neuem Fenster)

Report on requirements for machine-generated verbal communication respectful of European values as enshrined in Article 2 of the EU Treaty.

Pilot Requirements & Usability Evaluation (öffnet in neuem Fenster)

Uses cases, requirements and outcomes for the different pilots. Summary of the set of KPIs, criteria and methodology to evaluate the ELOQUENCE usability.

Open source datasets suitable for semi-structured, unstructured and multi-turn conversations (öffnet in neuem Fenster)

Requirements for semi-structured, multi-turn and unstructured dialogues, available/relevant literature review on evaluation of dialogues and description of methodology on how the fused datasets are generated

Project Management Handbook (öffnet in neuem Fenster)

Management procedure, consortium communication tools and the quality and risk management plans.

Methodology for jointly training FIR and response generator (öffnet in neuem Fenster)

The methodologies on interconnecting FIR and response generator, analysis of scenarios relevant to ELOQUENCE. Implementation of the FIR and response generator joint training.

ELOQUENCE DMP (öffnet in neuem Fenster)

The legal aspects and the data management plan for the collection and processing of data throughout the project activities.

ELOQUENCE DMP II (öffnet in neuem Fenster)

The legal aspects and the data management plan for the collection and processing of data throughout the project activities.

ELOQUENCE Interactive Playground (öffnet in neuem Fenster)

Initial version of the Interactive Playground for the LM validation.

Veröffentlichungen

Comparing Data Augmentation Methods for End-to-End Task-Oriented Dialog Systems (öffnet in neuem Fenster)

Autoren: Christos Vlachos, Themos Stafylakis, Ion Androutsopoulos
Veröffentlicht in: Findings of the Association for Computational Linguistics ACL 2024, 2024
Herausgeber: Association for Computational Linguistics
DOI: 10.18653/V1/2024.FINDINGS-ACL.431

BESST Dataset: A Multimodal Resource for Speech-based Stress Detection and Analysis (öffnet in neuem Fenster)

Autoren: Jan Pešán, Vojtěch Juřík, Martin Karafiát, Jan Černocký
Veröffentlicht in: Interspeech 2024, 2024
Herausgeber: ISCA
DOI: 10.21437/INTERSPEECH.2024-42

BUT systems and analyses for the ASVspoof 5 Challenge (öffnet in neuem Fenster)

Autoren: Johan Rohdin, Lin Zhang, Plchot Oldřich, Vojtěch Staněk, David Mihola, Junyi Peng, Themos Stafylakis, Dmitriy Beveraki, Anna Silnova, Jan Brukner, Lukáš Burget
Veröffentlicht in: The Automatic Speaker Verification Spoofing Countermeasures Workshop (ASVspoof 2024), 2024
Herausgeber: ISCA
DOI: 10.21437/ASVSPOOF.2024-4

TokenVerse: Towards Unifying Speech and NLP Tasks via Transducer-based ASR (öffnet in neuem Fenster)

Autoren: Shashi Kumar, Srikanth Madikeri, Juan Pablo Zuluaga Gomez, Iuliia Thorbecke, Esaú Villatoro-tello, Sergio Burdisso, Petr Motlicek, Karthik Pandia D S, Aravind Ganapathiraju
Veröffentlicht in: Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, 2024
Herausgeber: Association for Computational Linguistics
DOI: 10.18653/V1/2024.EMNLP-MAIN.1167

Pretraining End-to-End Keyword Search with Automatically Discovered Acoustic Units (öffnet in neuem Fenster)

Autoren: Bolaji Yusuf, Jan Honza Cernocky, Murat Saraçlar
Veröffentlicht in: Interspeech 2024, 2024
Herausgeber: ISCA
DOI: 10.21437/INTERSPEECH.2024-1713

Parameter-Efficient Transfer Learning of Audio Spectrogram Transformers (öffnet in neuem Fenster)

Autoren: Umberto Cappellazzo, Daniele Falavigna, Alessio Brutti, Mirco Ravanelli
Veröffentlicht in: 2024 IEEE 34th International Workshop on Machine Learning for Signal Processing (MLSP), 2024
Herausgeber: IEEE
DOI: 10.1109/MLSP58920.2024.10734776

Multitask Speech Recognition and Speaker Change Detection for Unknown Number of Speakers (öffnet in neuem Fenster)

Autoren: Shashi Kumar, Srikanth Madikeri, Iuliia Nigmatulina, Esaú Villatoro-Tello, Petr Motlicek, Karthik Pandia, S. Pavankumar Dubagunta, Aravind Ganapathiraju
Veröffentlicht in: ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024
Herausgeber: IEEE
DOI: 10.1109/ICASSP48485.2024.10446130

Large Language Models are Strong Audio-Visual Speech Recognition Learners (öffnet in neuem Fenster)

Autoren: Umberto Cappellazzo, Minsu Kim, Honglie Chen, Pingchuan Ma, Stavros Petridis, Daniele Falavigna, Alessio Brutti, Maja Pantic
Veröffentlicht in: ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2025
Herausgeber: IEEE
DOI: 10.1109/ICASSP49660.2025.10889251

Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction (öffnet in neuem Fenster)

Autoren: Sergio Burdisso, Srikanth Madikeri, Petr Motlicek
Veröffentlicht in: Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, 2024
Herausgeber: Association for Computational Linguistics
DOI: 10.18653/V1/2024.EMNLP-MAIN.310

Multimodal Emotion Recognition Using Compressed Graph Neural Networks (öffnet in neuem Fenster)

Autoren: Tijana Đurkić, Nikola Simić, Siniša Suzić, Dragana Bajović, Zoran Perić, Vlado Delić
Veröffentlicht in: Lecture Notes in Computer Science, Speech and Computer, 2025
Herausgeber: Springer Nature Switzerland
DOI: 10.1007/978-3-031-78014-1_9

BUT/JHU System Description for CHiME-8 NOTSOFAR-1 Challenge (öffnet in neuem Fenster)

Autoren: Alexander Polok, Dominik Klement, Jiangyu Han, Šimon Sedláček, Bolaji Yusuf, Matthew Maciejewski, Matthew S Wiesner, Lukáš Burget
Veröffentlicht in: 8th International Workshop on Speech Processing in Everyday Environments (CHiME 2024), 2024
Herausgeber: ISCA
DOI: 10.21437/CHIME.2024-4

Efficient Fine-tuning of Audio Spectrogram Transformers via Soft Mixture of Adapters (öffnet in neuem Fenster)

Autoren: Umberto Cappellazzo, Daniele Falavigna, Alessio Brutti
Veröffentlicht in: Interspeech 2024, 2024
Herausgeber: ISCA
DOI: 10.21437/INTERSPEECH.2024-38

MT-LENS: An all-in-one Toolkit for Better Machine Translation Evaluation (öffnet in neuem Fenster)

Autoren: Javier García Gilabert, Carlos Escolano, Audrey Mash, Xixian Liao, Maite Melero
Veröffentlicht in: Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations), 2025
Herausgeber: Association for Computational Linguistics
DOI: 10.18653/V1/2025.NAACL-DEMO.6

Suche nach OpenAIRE-Daten ...

Bei der Suche nach OpenAIRE-Daten ist ein Fehler aufgetreten

Es liegen keine Ergebnisse vor

Mein Booklet 0 0