Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Developing the Next Generation of Environmentally-Friendly Floating Wind Farms with Innovative Technologies and Sustainable Solutions

CORDIS fornisce collegamenti ai risultati finali pubblici e alle pubblicazioni dei progetti ORIZZONTE.

I link ai risultati e alle pubblicazioni dei progetti del 7° PQ, così come i link ad alcuni tipi di risultati specifici come dataset e software, sono recuperati dinamicamente da .OpenAIRE .

Risultati finali

Novel generator design and performance (si apre in una nuova finestra)

The preliminary design of an innovative lightweight generator design that leverages Hagnesia’s patented technology will be carried out. The design will be optimized based on the requirements of the project. The characteristics of the direct-drive generator will be described.

Validated wake model for QBlade capable of modeling turbine interactions (si apre in una nuova finestra)

In this task, a new wake model will be developed to increase the fidelity of the wake model within QBlade without sacrificing computational efficiency. TUB, with the help of DTU, will develop this new wake model, which will be released as an open-source flow solver (M12). This solver will be coupled to QBlade in order to allow fast simulation of active wake excitation methods. The wake model will be validated against unsteady wake measurements using data gathered in wind tunnel experiments at the TU Delft.

An Interface of HAWC2 to the Framework for Floating Offshore Turbine Design Optimization WEIS (si apre in una nuova finestra)

The source code of the interface between HAWC2 and WEIS will be released on GitHub (or similar) together with a hands-on examples on its application and inital demonstration cases.

An Interface of QBlade to the Framework for Floating Offshore Turbine Design Optimization WEIS (si apre in una nuova finestra)

The source code of the interface between QBlade and WEIS will be released on GitHub (or similar) together with a hands-on examples on its application and inital demonstration cases.

Pubblicazioni

A Deep Learning Strategy for the Retrieval of Sea Wave Spectra from Marine Radar Data (si apre in una nuova finestra)

Autori: Giovanni Ludeno, Giuseppe Esposito, Claudio Lugni, Francesco Soldovieri, Gianluca Gennarelli
Pubblicato in: Journal of Marine Science and Engineering, Numero 12, 2024, ISSN 2077-1312
Editore: MDPI AG
DOI: 10.3390/JMSE12091609

È in corso la ricerca di dati su OpenAIRE...

Si è verificato un errore durante la ricerca dei dati su OpenAIRE

Nessun risultato disponibile

Il mio fascicolo 0 0