Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Delivery of liquid Hydrogen for Various Environment at High Rate

Project description

Liquid hydrogen for shipping, aviation, and railroads

Liquid hydrogen plays a crucial role in reducing carbon emissions across various industries, including energy, chemicals, and mobility. While fast refuelling technology is well-established for light vehicles, its application in heavy-duty vehicles remains challenging. In this context, the EU-funded DelHyVEHR project will develop a high-flow rate transfer cryogenic pump for liquid hydrogen (LH2) refuelling stations. Additionally, it aims to optimise a boil-off gas management system capable of recovering more than 80 % of the hydrogen. It will also assess the economic, environmental, and policy impacts of these technologies. The project’s objectives include completing a demonstration before 2027, targeting commercialisation by 2029, and refuelling 15 stations by 2030, with a long-term goal of refuelling up to 81 stations by 2040.

Objective

Liquid hydrogen is a key solution to enable strong carbon reduction for energy, chemical and mobility industries. If technologies are mature for light vehicles fast refuelling, it is still a challenge for heavy duty applications, hampering massive environmental gains for aviation, maritime, railroad.
DelHyVEHR offers to fill the gap of liquid hydrogen distribution technologies by driving the maturation to the demonstration at TRL 6 of the large-scale refuelling station and each main systems with a specific focus on pumping, metering, loading and boil-off gas management systems.
DelHyVEHR main objectives are to:
• Develop a high flowrate (>5 t/h and up to 6 t/h) transfer cryogenic pump for LH2 refuelling stations with high efficiency (>60%) and high reliability (Mean Time Between Maintenance > 3000h)
• Develop and adapt loading and dispensing systems for the high-flowrate refuelling station
• Develop and optimize a boil-off gas management system enable to recover >80% of the hydrogen
• Design, build and operate the LH2 refuelling station to refill a cryogenic storage of 4-6 m3 and with integrated technologies demonstrated over long-time operation (>10 h)
• Assess economic, environmental impacts and policy suitability of the technologies and demonstrator with expected cost reduction of investments and operation of LH2 bunkering stations at 1.5 €/kg and deliver H2 carbon footprint aligned with RED II legislation below 3.38 kgCO2/kgH2
• Ensure safety of the LH2 bunkering station and its operation
DelHyVEHR demonstration before 2027 will enable commercialisation before 2029 to target 15 refuelling stations in 2030 and up to 81 stationsin 2040 for shipping, aviation and railroad markets.
To succeed, DelHyVEHR gathers 13 EU leading partners covering the whole value chain from component development to system demonstration and assessment, along with an advisory board of worldwide leading H2 end-users.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-JU-IA - HORIZON JU Innovation Actions

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-JTI-CLEANH2-2023-1

See all projects funded under this call

Coordinator

ENGIE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 636 807,50
Address
1 PLACE SAMUEL DE CHAMPLAIN
92400 Courbevoie
France

See on map

Region
Ile-de-France Ile-de-France Hauts-de-Seine
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 955 131,25

Participants (9)

Partners (3)

My booklet 0 0