Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Overcoming Mechanically-Induced Resistance to Chemo-Immunotherapy in Pancreatic Cancer

Project description

Combating mechanical resistance in pancreatic cancer

As tumours grow, they generate mechanical stresses due to increased cell proliferation and extracellular matrix remodelling. This results in increased pressure within the tumour and blood vessel constriction, impairing perfusion and drug delivery. Losartan, an anti-hypertensive drug, can alleviate vessel compression and improve chemotherapy response in pancreatic cancer patients. However, mechanical stresses can also induce chemotherapy resistance, compromising therapeutic outcomes. The ERC-funded MechanoResistance project aims to address chemotherapy resistance caused by mechanical constriction. Researchers will employ pancreatic cancer models to investigate the underlying mechanisms using cutting-edge bioengineering and biology techniques. Following validation of these findings in human tumour biopsies, innovative inhibitors will be tested in combination with losartan and immunotherapy as an improved anti-cancer strategy.

Objective

Cancer progression is closely associated with generation of mechanical stresses that cause the compression of tumor vessels, drastically reducing delivery of drugs. My co-workers and I found that host cells and extracellular matrix in tumors generate these stresses. Furthermore, we identified the anti-hypertensive losartan to alleviate intratumoral stresses and decompress vessels, allowing drugs to enter the tumor. My colleagues tested losartan in pancreatic cancer patients and found improved responses to chemo-radiation. Nonetheless, losartan cannot alleviate all stresses, and my preliminary data indicate that they induce chemotherapy resistance (“mechanoresistance”). Thus, even though vessel decompression facilitates drugs entering the tumor, mechanoresistance renders cancer cells insensitive to drugs. Alleviating mechanoresistance is an urgent clinical need, but this mechanism has not been well studied and strategies to overcome it have not been developed successfully. To address this challenge, I will employ a mixture of cutting-edge bioengineering and biology methods to identify the intracellular mechanisms that promote mechanoresistance, using in vitro and mouse models of pancreatic cancer. I will then employ inhibitors/drugs of the identified mechanisms to overcome mechanoresistance in vitro and in vivo to determine if they increase the efficacy of chemotherapy. I will also confirm whether these drugs work more effectively with losartan or alone. Using the best performing regimen, I will assess the immunological effects and efficacy in combination with immunotherapy, which has yet to induce a benefit in pancreatic cancer trials. In parallel, in order to take this ground-breaking goal of improving pancreatic cancer therapy to the clinic, I will examine the existence of the same mechanoresistance mechanisms in human tumors. The project will introduce novel, patient-specific, therapeutic strategies to directly boost clinical trials in pancreatic cancer patients.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-ADG

See all projects funded under this call

Host institution

UNIVERSITY OF CYPRUS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 500 000,00
Address
AVENUE PANEPISTIMIOU 2109 AGLANTZI
1678 Nicosia
Cyprus

See on map

Region
Κύπρος Κύπρος Κύπρος
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 500 000,00

Beneficiaries (1)

My booklet 0 0