Project description
Decoding genomic heterogeneity in cancer
Cancer cells are characterised by high frequency of mutations and chromosomal rearrangements that lead to genetic diversity and heterogeneity. Recent evidence suggests that complex genomic rearrangements (CGRs) may drive the evolution of pancreatic ductal adenocarcinoma (PDAC), the most common and lethal form of pancreatic cancer. Funded by the Marie Skłodowska-Curie Actions progamme, the EVO-PDAC project aims to clarify the role of CGRs, structural variants and point mutations in PDAC progression. Using cutting-edge techniques, researchers will create multiomics atlases of PDAC at different stages. Results will help researchers understand PDAC evolution and the emergence of intratumour heterogeneity.
Objective
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, a disease with a dismal prognosis. PDAC has an especially high tendency of quickly metastasizing and becoming resistant to therapy, and the mechanisms by which this occurs are largely unknown. Recent evidence suggests that saltatory or burst-like evolution mediated by complex genomic rearrangements (CGRs) may be especially relevant in PDAC, altering multiple cancer genes in a single event. However, quantifying CGRs requires specialized techniques (such as Strand-Seq), and therefore the relative importance of CGRs, simple structural variants, and point mutations in PDAC evolution remains unclear. In this project, we will use a genetically engineered mouse model (GEMM) that develops de novo PDAC to longitudinally track PDAC evolution by single-cell and spatial multi-omic methods, using Strand-Seq to accurately detect CGRs. Thus, we aim to create longitudinal single-cell and spatial multi-omic atlases of PDAC at three key evolutionary steps: pre-cancer, therapy-naive PDAC, and post-therapy PDAC. In addition, we will compare our atlases to human PDAC data from the Spatial And Temporal Resolution of Intratumoral Heterogeneity in 3 hard-to-treat Cancers (SATURN3) Consortium. In this way, we will model PDAC evolution at various time points, quantifying the relative importance of gradual vs saltatory evolution and determining how evolvability changes over time. Moreover, we will infer the role of selective pressures from the tumor microenvironment (e.g. immune cells and cancer-associated fibroblasts) in shaping PDAC evolution. Finally, we will explore how all these factors interact with the high intratumoral heterogeneity observed in PDAC. Overall, this project will answer long-standing questions about the evolutionary dynamics of PDAC.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences clinical medicine oncology prostate cancer
- natural sciences biological sciences genetics mutation
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2023-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
69117 Heidelberg
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.