Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Preservation and RecognItion of Spatial patterns using Machine learning

Description du projet

Intégrer des modèles spatiaux dans l’apprentissage automatique écologique

Dans le domaine de la recherche écologique, il est essentiel de produire des cartes spatiales précises qui englobent des variables essentielles telles que la biodiversité et le climat. Les méthodes actuelles d’apprentissage automatique, comme les forêts d’arbres décisionnels, sont efficaces mais négligent souvent les schémas spatiaux complexes inhérents aux processus écologiques. Cette limitation entrave notre compréhension des écosystèmes complexes et compromet la précision des prévisions. Soutenu par le programme Actions Marie Skłodowska-Curie, le projet PRISM s’attaque à ce problème en intégrant et en validant des modèles spatiaux dans des modèles d’apprentissage automatique. S’inspirant de la géographie, de l’écologie et de l’informatique, PRISM adopte une approche scientifique ouverte afin de diffuser largement ses résultats. Il favorise la collaboration entre les chercheurs et les institutions, en enrichissant les compétences et les méthodologies. En fin de compte, PRISM promet d’améliorer la recherche écologique, en offrant des prédictions plus précises et une meilleure compréhension des modèles spatiaux.

Objectif

Ecological research necessitates the production of spatial maps representing an array of critical variables such as biodiversity, climate, land cover, and soil carbon storage. While current machine learning methods, such as the well-known random forest (RF), have been effective in generating maps for these variables, they often overlook the intricate spatial patterns inherent in ecological processes. The PRISM project seeks to introduce a novel approach that addresses this limitation by integrating and validating spatial patterns within machine learning models. The project will draw upon insights from various fields, including geography, landscape ecology, statistics, and computer science. To ensure the widespread dissemination and accessibility of its findings, PRISM will adopt a comprehensive open science approach, including manuscript publications, the development of open-source software, and the sharing of repositories containing data and code, enabling others to reproduce and build upon the project's results. Through this project, an exchange of knowledge is anticipated between the researcher and the host institution, fostering a collaborative partnership. Under the supervisor's mentorship, the researcher will acquire essential skills in group organization, grant preparation, and research leadership. The researcher will enrich the host institution by creating innovative methods for spatial data analysis, implementing impactful teaching methodologies, and sharing the principles of open science. Ultimately, the PRISM project is poised to fuel the researcher's interdisciplinary growth, positioning him as a valuable asset in both academia and industry. The project's outcomes have the potential to improve how ecological research is conducted, leading to more accurate predictions and a deeper understanding of complex spatial patterns in ecological systems.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2023-PF-01

Voir tous les projets financés au titre de cet appel

Coordinateur

UNIVERSITAET MUENSTER
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 189 687,36
Adresse
SCHLOSSPLATZ 2
48149 Muenster
Allemagne

Voir sur la carte

Région
Nordrhein-Westfalen Münster Münster, Kreisfreie Stadt
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0