Projektbeschreibung
Effiziente Darstellung Abelscher Varietäten
Die Schnittmenge zwischen algebraischer Geometrie und Zahlentheorie umfasst zahlreiche Themen und Entdeckungen, die für die wissenschaftliche und mathematische Gemeinschaft sowie für forschende Personen von großem Interesse sind, wobei Abelsche Varietäten eine besonders wichtige Rolle spielen. Bedauerlicherweise sind Abelsche Varietäten, bei denen es sich um projektive Varietäten handelt, deren Punkte eine Gruppe bilden, bereits in der zweiten Dimension nur schwer durch Gleichungen darstellbar, was neben anderen Schwierigkeiten ihre Untersuchung erschwert. Das im Rahmen der Marie-Skłodowska-Curie-Maßnahmen geförderte Projekt AbVarFq zielt darauf ab, konkrete Methoden zur Darstellung von Abelschen Varietäten über einem endlichen Körper zu entwickeln und diese bis auf Isomorphie zu klassifizieren, einschließlich ihrer Polarisationen. Diese Aktivitäten werden nicht nur effizientere Darstellungsmethoden liefern, sondern auch unser Verständnis dieser Varietäten verbessern.
Ziel
Some of the most extensively studied objects at the intersection of number theory and algebraic geometry are abelian varieties, which are projective varieties whose points form a group.
The main objective of the project is to concretely represent abelian varieties defined over a finite field and classify them up to isomorphism, together with their polarizations.
The main goal has been achieved in previous years by work of the Researcher, Supervisor and collaborators in several cases, which enjoy two properties: the varieties admit canonical liftings and the p-divisible groups do not play a special role in the classification.
The project deals with the cases where these crucial properties do not hold, making them theoretically more complicated to grasp, but also more interesting.
Achieving the objective will have several consequences. Firstly, we will obtain an efficient way to represent abelian varieties over finite fields, overcoming the facts that equations are too cumbersome, already in dimension 2, and that Jacobian varieties give a complete description only in low dimension and with certain kind of polarizations. Secondly, we will fill some important gaps in our current understanding of many invariants attached to the abelian varieties, like the p-rank or the Newton polygon. Third, the project will pave the way to: compute the cohomology of moduli spaces of the abelian varieties by interpolating our point-counts over finite fields; shed light one the set of conjectures connecting automorphic forms and representation theory usually known as the Langlands program; study isogeny graphs of abelian varieties over finite fields, which have the potential of being useful in (post-quantum-)cryptography; understand properties of algebraic-geometric codes via Jacobians. Note that the last two applications could have significant impact on making digital communications more secure and reliable, and hence considerably affect our society and economy.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) HORIZON-MSCA-2023-PF-01
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenKoordinator
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
06100 Nice
Frankreich
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.