Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Abelian varieties over finite fields

Opis projektu

Skuteczna reprezentacja rozmaitości abelowych

Na przecięciu geometrii algebraicznej i teorii liczb znajduje się wiele tematów i odkryć, które głęboko interesują społeczność naukową i matematyczną oraz badaczy, przy czym szczególnie istotne są rozmaitości abelowe. Niestety, rozmaitości abelowe, będące rozmaitościami rzutowymi, których punkty tworzą grupę, są trudne do przedstawienia za pomocą równań już w wymiarze 2, co utrudnia ich badanie. Zespół projektu AbVarFq, dzięki wsparciu programu działania „Maria Skłodowska-Curie”, dąży do opracowania konkretnych metod reprezentacji rozmaitości abelowych zdefiniowanych nad polem skończonym oraz klasyfikowania ich ze względu na izomorfizm, w tym polaryzację. Te starania mają nie tylko zapewnić bardziej wydajną metodę reprezentacji, ale także poprawić nasze zrozumienie tych rozmaitości.

Cel

Some of the most extensively studied objects at the intersection of number theory and algebraic geometry are abelian varieties, which are projective varieties whose points form a group.
The main objective of the project is to concretely represent abelian varieties defined over a finite field and classify them up to isomorphism, together with their polarizations.

The main goal has been achieved in previous years by work of the Researcher, Supervisor and collaborators in several cases, which enjoy two properties: the varieties admit canonical liftings and the p-divisible groups do not play a special role in the classification.
The project deals with the cases where these crucial properties do not hold, making them theoretically more complicated to grasp, but also more interesting.

Achieving the objective will have several consequences. Firstly, we will obtain an efficient way to represent abelian varieties over finite fields, overcoming the facts that equations are too cumbersome, already in dimension 2, and that Jacobian varieties give a complete description only in low dimension and with certain kind of polarizations. Secondly, we will fill some important gaps in our current understanding of many invariants attached to the abelian varieties, like the p-rank or the Newton polygon. Third, the project will pave the way to: compute the cohomology of moduli spaces of the abelian varieties by interpolating our point-counts over finite fields; shed light one the set of conjectures connecting automorphic forms and representation theory usually known as the Langlands program; study isogeny graphs of abelian varieties over finite fields, which have the potential of being useful in (post-quantum-)cryptography; understand properties of algebraic-geometric codes via Jacobians. Note that the last two applications could have significant impact on making digital communications more secure and reliable, and hence considerably affect our society and economy.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) HORIZON-MSCA-2023-PF-01

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

UNIVERSITE COTE D'AZUR
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 195 914,88
Adres
GRAND CHATEAU 28 AVENUE VALROSE
06100 Nice
Francja

Zobacz na mapie

Region
Provence-Alpes-Côte d’Azur Provence-Alpes-Côte d’Azur Alpes-Maritimes
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych
Moja broszura 0 0