Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Ambrosio-Tortorelli approach to topological singularities

Descripción del proyecto

Un enfoque unificado para estudiar las singularidades topológicas

Las singularidades topológicas (ciertos puntos en los que se rompe la continuidad) son fenómenos intrigantes importantes tanto para la teoría como para las aplicaciones prácticas. En campos como la física y la ciencia de los materiales, ayudan a explicar estructuras complejas como los vórtices en los superconductores, las fracturas en los sólidos y los defectos en los cristales. El equipo del proyecto TopSing, financiado por las Acciones Marie Skłodowska-Curie, utilizará un nuevo enfoque teórico para estudiar determinados problemas físico-mecánicos en los que aparecen singularidades. Inspirado en el modelo de Ambrosio y Tortorelli, el método propuesto busca una forma unificada de analizar dos problemas principales que implican singularidades, lo que facilitará su modelización y aplicación en escenarios reales. En particular, la atención se centrará en las dislocaciones de tornillos en cristales y su relación con los vórtices en superconductores, y el problema no paramétrico de Plateau en codimensión dos.

Objetivo

The exploration of topological singularities is a fascinating task of absolute relevance both from the theoretical and applied point of view.
For example, in physics and materials science they arise from the study of mathematical models for vortices in superconductors, grain boundaries in polycrystals, fractures in solids, and defects in crystals such as disclinations or dislocations. Furthermore, topological singularities play an important role in the study of more geometric problems such as the Plateau problem and the theory of minimal surfaces.

The goal of TopSing is to study some physical/mechanical problems where singularities appear, through a theoretical approach that opens promising directions also for other, apparently unrelated, situations like the non-parametric Plateau problem in higher codimension.
More specifically, we draw our attention to codimension-two singularities and consider two-dimensional models for fields having point singularities which are relevant in the study of two main problems:

1) Screw Dislocations in crystals and their relation with vortices in superconductors;

2) The non-parametric Plateau problem in codimension-two.

The main novelty consists in developing a unified approach, inspired by the classical model by Ambrosio and Tortorelli (AT), that allows to study topological singularities in both contexts listed above. Furthermore this will provide a model which is easier to handle numerically and thus interesting from the point of view of applications.
The project is organised into four main objectives whose common thread is the asymptotic analysis of elliptic functionals á la AT for maps taking values on the unit circle. To our best knowledge there are no similar results in the literature. This is due to the non trivial task of constructing a recovery sequence that takes values on the circle, which we aim at achieving by relying on degree theory and by using techniques developed to study the relaxed area.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) HORIZON-MSCA-2023-PF-01

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

UNIVERSITA DEGLI STUDI DI SIENA
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 172 750,08
Dirección
VIA BANCHI DI SOTTO 55
53100 Siena
Italia

Ver en el mapa

Región
Centro (IT) Toscana Siena
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Socios (1)

Mi folleto 0 0