Description du projet
Une approche unifiée de l’étude des singularités topologiques
Les singularités topologiques (certains points de rupture de la continuité) sont des phénomènes intrigants, importants tant pour la théorie que pour les applications pratiques. Dans des domaines tels que la physique et la science des matériaux, ils aident à expliquer des structures complexes comme les tourbillons dans les supraconducteurs, les fractures dans les solides et les défauts dans les cristaux. Financé par le programme Actions Marie Skłodowska-Curie, le projet TopSing utilisera une nouvelle approche théorique pour étudier certains problèmes physiques/mécaniques où apparaissent des singularités. Inspirée du modèle d’Ambrosio et Tortorelli, la méthode proposée cherche à unifier l’analyse de deux problèmes principaux impliquant des singularités, en les rendant plus faciles à modéliser et à appliquer dans des scénarios du monde réel. En particulier, l’accent sera mis sur les dislocations vis dans les cristaux et leur relation avec les tourbillons dans les supraconducteurs, ainsi que sur le problème du plateau non paramétrique en codimension deux.
Objectif
The exploration of topological singularities is a fascinating task of absolute relevance both from the theoretical and applied point of view.
For example, in physics and materials science they arise from the study of mathematical models for vortices in superconductors, grain boundaries in polycrystals, fractures in solids, and defects in crystals such as disclinations or dislocations. Furthermore, topological singularities play an important role in the study of more geometric problems such as the Plateau problem and the theory of minimal surfaces.
The goal of TopSing is to study some physical/mechanical problems where singularities appear, through a theoretical approach that opens promising directions also for other, apparently unrelated, situations like the non-parametric Plateau problem in higher codimension.
More specifically, we draw our attention to codimension-two singularities and consider two-dimensional models for fields having point singularities which are relevant in the study of two main problems:
1) Screw Dislocations in crystals and their relation with vortices in superconductors;
2) The non-parametric Plateau problem in codimension-two.
The main novelty consists in developing a unified approach, inspired by the classical model by Ambrosio and Tortorelli (AT), that allows to study topological singularities in both contexts listed above. Furthermore this will provide a model which is easier to handle numerically and thus interesting from the point of view of applications.
The project is organised into four main objectives whose common thread is the asymptotic analysis of elliptic functionals á la AT for maps taking values on the unit circle. To our best knowledge there are no similar results in the literature. This is due to the non trivial task of constructing a recovery sequence that takes values on the circle, which we aim at achieving by relying on degree theory and by using techniques developed to study the relaxed area.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- lettres langues et littérature études littéraires
- sciences agricoles agriculture, sylviculture et pêche agriculture céréales et oléagineux
- sciences naturelles sciences physiques électromagnétisme et électronique superconducteur
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2023-PF-01
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
53100 Siena
Italie
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.