Descripción del proyecto
Nuevas técnicas geométricas hacen avanzar la investigación sobre los operadores maximales
En 1997, Juha Kinnunen demostró que los operadores maximales satisfacen los límites de Sobolev cuando el exponente p es superior a 1, lo que desencadenó una investigación amplia sobre la regularidad de las funciones maximales. Partiendo de esta base, las mejoras recientes en el uso de las técnicas geométricas han logrado avances significativos en los límites de regularidad de los extremos de mayor dimensión. Financiado por las Acciones Marie Skłodowska-Curie, el equipo del proyecto SRMF aprovecha estas herramientas geométricas nuevas con métodos de extremización ya establecidos para abordar muchas preguntas sin respuesta en este campo. Con la investigación propuesta se intenta demostrar que la variación de las funciones maximales no centradas puede estar regulada por la variación de la función y abordar una cuestión pendiente desde hace tiempo en p=1. También se intentará demostrar que el operador maximal centrado de Hardy-Littlewood en una dimensión no aumenta la variación de una función.
Objetivo
In 1997 Juha Kinnunen proved that maximal operators satisfy a Sobolev bound if the Sobolev exponent p is strictly larger than 1. His article initiated the study of regularity of maximal functions, a field which has attracted several dozens of authors to this day. Geometric techniques have recently lead to a series of breakthrough endpoint regularity bounds for maximal operators in higher dimensions. This project pursues the novel strategy of combining these new geometric tools with already established extremization techniques in order to solve a wide range of open questions in the field.
The goals of the project are organized around two themes: gradient bounds and sharp constants. The main goal from the first theme is to prove that the variation of the non-centered Hardy-Littlewood maximal function can be controlled by the variation of the function in all dimensions. This is the endpoint p=1 of Juha Kinnunen's original bound and is one of the main long standing open questions in the field. This project also aims to prove this variation bound for further maximal operators, along with the operator continuity of their gradient and bounds for higher derivatives.
The main goal from the second theme is to prove that the centered Hardy-Littlewood maximal operator in one dimension does not increase the variation of a function. This bound would be sharp because examples show that in general, maximal operators do not strictly decrease the variation of a function. This project further aims to prove this sharp bound for convolution type maximal operators and to find the sharp constant in the variation bound for the dyadic maximal operator in all dimensions.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) HORIZON-MSCA-2023-PF-01
Ver todos los proyectos financiados en el marco de esta convocatoriaCoordinador
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
75007 PARIS
Francia
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.