Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Generalised Integrality and Applications to Number Theory

Description du projet

Établir un lien entre les points rationnels et les points intégraux dans la théorie des nombres

L’étude des points rationnels et intégraux sur les variétés algébriques a longtemps fasciné les mathématiciens, mais nous devons approfondir nos connaissances pour unifier ces théories. Les points semi-intégraux, introduits par Campana et Darmon, constituent une passerelle, généralisant ces notions avec une condition d’intégralité liée à un diviseur de la frontière pondéré. Malgré ces progrès, des questions essentielles subsistent quant à leur existence et à leur densité. Soutenu par le programme Actions Marie Skłodowska-Curie, le projet GIANT cherche à relever ces défis en développant des bornes supérieures pour la densité des paires d’orbifolds avec des points semi-intégraux et en identifiant les obstacles à leur existence. Combinant des techniques issues de la théorie analytique des nombres, de la géométrie algébrique et des statistiques arithmétiques, GIANT vise à résoudre les problèmes diophantiens et à affiner notre compréhension des solutions intégrales.

Objectif

In this proposal semi-integral points refer to notions of rational points on algebraic varieties that satisfy an integrality condition with respect to a weighted boundary divisor. They were first introduced by Campana and by Darmon. Campana points have recently risen to the attention of the number theory community thanks to a Manin type conjecture in the recent work of Pieropan, Smeets, Tanimoto and Várilly-Alvarado. Semi-integral points provide both an intermediate notion and a generalisation of the notions of rational and integral points, thereby unifying the two theories. This proposal concerns the existence of semi-integral points and the density of orbifold pairs in general families having semi-integral points.

The aims of this proposal are to determine good upper bounds for the density of orbifold pairs in a general family that have semi-integral points (WP1) and to compute obstructions to the existence of semi-integral points (and hence to integral points) in key examples corresponding to long-lasting questions in number theory (WP2).

The approach will combine a variety of techniques from analytic number theory, algebraic geometry and arithmetic statistics. For (WP1), the experienced researcher and the supervisor will develop a criterion to detect local semi-integral points together with a sieve method to estimate the number of everywhere locally soluble varieties in the family. For (WP2), the research team will develop a Brauer-Manin obstruction theory for semi-integral points to compute failures of the integral Hasse principle in fundamental examples and handle classical Diophantine problems such as the existence of integral points on diagonal cubic surfaces and the non-existence of consecutive powerful numbers.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2023-PF-01

Voir tous les projets financés au titre de cet appel

Coordinateur

INSTITUTE OF MATHEMATICS AND INFORMATICS AT THE BULGARIAN ACADEMY OF SCIENCE
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 120 812,16
Adresse
ACAD G BONCHEV STREET BL 8
1113 Sofia
Bulgarie

Voir sur la carte

Région
Югозападна и Южна централна България Югозападен София (столица)
Type d’activité
Research Organisations
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0